首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The search for alternative anode materials for solid oxide fuel cells (SOFCs) has been reviewed in the light of structure, stability, conductivity, chemical and thermal compatibility with electrolyte YSZ. In this review, we have presented the advantages and disadvantages of the traditional Ni-YSZ anode for SOFCs. The development of alternative anode for SOFCs with fluorite, rutile, tungsten bronze, pyrochlore, perovskite and spinel structures has been reviewed and discussed in detail. Among the reported materials systems, materials with perovskite structure are promising particularly where two ions with complimentary function are present on the B-site at high concentration. We have recently found a good redox stable anode (La(0.75)Sr(0.25))(1-x)Cr(0.5)Mn(0.5)O(3) (0 相似文献   

2.
正1 Introduction As environmental pollution continues to worsen,governments are increasing their efforts to develop green transport vehicles,such as electric vehicles and hybrid cars.Efficient energy storage and conversion systems are urgently needed  相似文献   

3.
Direct utilization of hydrocarbon and other renewable fuels is one of the most important issues concerning solid oxide fuel cells (SOFCs). Mixed ionic and electronic conductors (MIECs) have been explored as anode materials for direct hydrocarbon-type SOFCs. However, electrical conductivity of the most often reported MIEC oxide electrodes is still not satisfactory. As a result, mixed-conducting oxides with high electrical conductivity and catalytic activity are attracting considerable interest as an alternative anode material for noncoke depositing anodes. In this study, we examine the oxide composite Ce(Mn,Fe)O(2)-La(Sr)Fe(Mn)O(3) for use as an oxide anode in direct hydrocarbon-type SOFCs. High performance was demonstrated for this composite oxide anode in direct hydrocarbon-type SOFCs, showing high maximum power density of approximately 1 W cm(-2) at 1073 K when propane and butane were used as fuel. The high power density of the cell results from the high electrical conductivity of the composite oxide in hydrocarbon and the high surface activity in relation to direct hydrocarbon oxidation.  相似文献   

4.
An important objective in the development of solid oxide fuel cell (SOFC) is to produce thin stabilized zirconia electrolytes that are supported upon the nickel–zirconia composite anode. Although this will reduce some of the problems associated with SOFCs by permitting lower temperature operation, this design may encounter problems during start- up. The first step in a start-up involves the reduction of nickel oxide in the anode to metallic nickel and increase of three-phase boundary will be beneficial for further reaction. In this study, two pretreatment methods are investigated for their effects on the performances of SOFC. Performances of the SOFCs are influenced by the pretreatment conditions, which included exposure of the cells to dilute H2/O2 either under open-circuit or closed-circuit conditions before their performance studies. By carrying out the methods, the pretreatment using the closed circuit is found to attain much higher performances effectively and efficiently. Accompanying with SEM and element analysis, increase of three-phase boundary is considered to give rise to changes in the anode microstructure, leading to activation of the anode. Mechanisms of NiO in anode reducing to Ni and porous structure via different pretreatments and their effects on the anode microstructure are proposed.  相似文献   

5.
Recently,the development of new electrode materials for lithium-ion batteries(LIBs)has received intensive attention.As an important family of inorganic materials,mixed Mo-based transition metal oxides system is focused as anode materials.In the present work,a simple route has been adopted for the synthesis of layered-flake-likeβ-SnMo04 Nano-assemblies,which have been explored as potential anode materials for the first time in lithium-ion battery(LIB).Overall,the current reports on metal molybdate as anode materials are still rarely.As the anode material for LIBs,it was observed that the fabricated anode is capable of delivering a steady state capacity of almost 400 mAh/g up to 300 cycles under the influence of200 mA/g current density.Further,the anode material is suitable for use as a rated capacity anode because of its high current density tolerance.The present study can be further extended for the generation of a wide variety of other novel materials for multidisciplinary energy related applications.  相似文献   

6.
Solid oxide fuel cells comprised of an anode made from sintered and reduced mesoporous-NiO-YSZ are shown to provide stable current and power densities at the operating temperature of 800 degrees C and show better performance than cells with anode cermets made from mechanical mixtures of NiO and YSZ, attributable to the unique anode microstructure.  相似文献   

7.
Solid oxide fuel cells (SOFC) have much promise as efficient devices for the direct conversion of the energy stored in chemical fuels into electricity. The development of highly robust SOFC that can operate on a range of fuels, however, requires improvements in the electrodes, especially the anode, where nanoscale engineering of the structure is required in order to maximize the number of sites where the electrochemical reactions take place. In this article we review the approaches that are currently being used to improve anode performance and microstructure with a focus on new materials and synthesis techniques.  相似文献   

8.
In this work, the effects of ethylene on the solid oxide fuel cell (SOFC) anode were investigated both for an SOFC single cell and an SOFC stack. Two fuels were used to observe the effects that low hydrocarbons (over C1-hydrocarbons) in the reformate gas stream have on the SOFC anode. Methane or ethylene was supplied to the electrolyte-supported SOFC anode. Using ethylene as a fuel, catastrophic degradation of SOFC performance was observed due to ethylene-induced carbon deposition onto the SOFC anode. Thus, a new methodology, termed “post-reforming,” is introduced for the removal of low hydrocarbons (over C1-hydrocarbons) from the reformate gas stream. The CGO-Ru catalyst was selected as the post-reforming catalyst because of its high selectivity for removing low hydrocarbons (over C1-hydrocarbons) and for its long-term stability. The diesel reformer and post-reformer were continuously operated for ∼250 h in coupled-operation mode. The reforming performance was not degraded, and low hydrocarbons (over C1-hydrocarbons) in the diesel reformate were completely removed.  相似文献   

9.
Tubular solid oxide fuel cells (SOFCs) are fabricated using a modified phase inversion process to obtain anode structure with graded pore distribution. The novel structure is achieved using an additional graphite layer to control the phase separation reaction in the ceramic layer and to remove the skin layer, which always presents in phase inversion process. The graded anode can effectively eliminate the concentration polarization loss at high current density as observed for the anode with the skin layer. In addition, improved peak power density is obtained with the graded-anode based cell, demonstrating that the modified process is promise in fabricating tubular SOFCs.  相似文献   

10.
在室温下,通过电位置换反应在固体氧化物燃料电池的Ni-YSZ(钇掺杂氧化锆)阳极表面制备海胆状Pd催化层。该催化层的结构和性能通过SEM、XRD和电化学等表征手段进行表征。结果表明,三维纳米花状Pd催化剂是由在Ni-YSZ阳极表面形成的多条纳米棒有序的组合而成。通过在Ni/YSZ阳极表面引入该催化层,相比与传统Ni-YSZ阳极,燃料电池的最高功率和稳定性都获得了很大的提升。该研究表明,电位置换反应是一种很高效的在传统Ni-YSZ阳极表面制备纳米抗积炭的功能层的方法。  相似文献   

11.
The widespread use of Pt anodes in pyroprocessing for oxide reduction inspired us to investigate the stability of a representative Pt anode in repeated UO2 reduction experiments. The formation and subsequent exfoliation of an oxide layer on the Pt surface was shown to result in anode degradation, decreasing the electrode thickness from 2 to 1.22 mm and reducing its volume by 42.4% after 33 experiments. Although the above degradation exhibited almost no effect on the UO2 reduction performance of the Pt anode, Pt degradation during long-term oxide reduction was demonstrated to be an important factor for estimating the cost of a pyroprocessing facility.  相似文献   

12.
The purpose of the current study is to simulate the behavior of a solid oxide fuel cell (SOFC) anode under sinusoidal excitation. The obtained harmonic response is used as a base for electrochemical impedance spectra simulation. The electrochemical impedance spectroscopy (EIS) is a powerful non-destructive tool for SOFC researches. In order to evaluate the EIS experimental results, efforts are devoted to develop EIS numerical simulation tools. In this study, a planar SOFC is modeled, and the steady state behavior and frequency response, as well as the electrochemical spectra of the anode, are obtained. The developed model couples the electrochemical kinetics with mass transport. The Butler–Volmer equation is used for the anode electrochemistry, and the species equations are used for gas transport in the anode channel. In order to solve the system of the nonlinear equations, an in-house code based on finite difference method is developed and utilized. A parametric study is also carried out, and the results are discussed. The simulation results are in good agreement with published data. Results show a capacitive semicircle in the Nyquist plot, which is identical to the gas diffusion impedance as reported in literatures.  相似文献   

13.
本文应用CNDO/2法研究了炼铝用碳阳极中添加碱金属氧化物的吸附行为, 通过优化得到了吸附的最佳模型, 考察了吸附结合能随分子间距的变化, 进而给出了碱金属氧化物在碳阳极中作用的机理。量子化学计算结果表明: 碱金属氧化物添加到炼铝用碳阳极中起传输电子的电桥作用, 是碳阳极在空气中氧化反应以及铝电解时生成氧气的氧化反应的催化剂; 理论计算和实验结果二者吻合较好, 可以用来解释若干实验结果。  相似文献   

14.
A tubular anode-supported solid oxide fuel cell with a double-layer anode for the direct conversion of CH4 has been prepared and operated at 800 °C successfully. The double-layer anode was composed of NiO–YSZ and CoO–NiO–SDC acting as supporting layer and active reforming layer, respectively. At 800 °C, a maximum power density of 350 mW cm−2 was obtained with CH4 as fuel and air as oxidant. The time-dependent impedance spectra of the tubular cell were examined and discussed. No carbon deposition was observed on the surface of the anode when the cell was operated at a constant current density of 250 mA cm−2.  相似文献   

15.
An intriguing cell concept by applying proton-conducting oxide as the ionic conducting phase in the anode and taking advantage of beneficial interfacial reaction between anode and electrolyte is proposed to successfully achieve both high open circuit voltage (OCV) and power output for SOFCs with thin-film samarium doped ceria (SDC) electrolyte at temperatures higher than 600 °C. The fuel cells were fabricated by conventional route without introducing an additional processing step. A very thin and dense interfacial layer (2-3 μm) with compositional gradient was created by in situ reaction between anode and electrolyte although the anode substrate had high surface roughness (>5 μm), which is, however, beneficial for increasing triple phase boundaries where electrode reactions happen. A fuel cell with Ni-BaZr(0.4)Ce(0.4)Y(0.2)O(3) anode, thin-film SDC electrolyte and Ba(0.5)Sr(0.5)Co(0.8)Fe(0.2)O(3-δ) (BSCF) cathode has an OCV as high as 1.022 V and delivered a power density of 462 mW cm(-2) at 0.7 V at 600 °C. It greatly promises an intriguing fuel cell concept for efficient power generation.  相似文献   

16.
《中国化学快报》2021,32(11):3548-3552
Solid oxide fuel cells (SOFCs) can directly convert renewable biogas into electricity with high efficiency at high temperature, however the long-term stability of SOFCs is significantly affected by the carbon deposition on the anode during cell operation. Herein, we report a novel carbon removal approach by high temperature infrared light driven photocatalytic oxidation. Upon the comparison of electrochemical performance of Ni-YSZ anode and TiO2 modified Ni-YSZ anode in the state-of-the-art single cell (Ni-YSZ/YSZ/LSCM), the modified anodes exhibit markedly improved peak powder density with simulated biogas fuel (70% CH4+ 30% CO2) at 850 °C with less coking after 40 h operation. The high activity and carbon deposition resistance of the modified anode is possibly attributed to the in situ generated hydroxyl radical from the reduced TiOx powder under high temperature infrared light excitation, which is supported by detailed analysis of microstructural information of anodes and the powder-based thermo-photocatalytic experiments.  相似文献   

17.
The decrease in the polarization resistance of the anode of solid-oxide fuel cells (SOFCs) due to the formation of an additional NiO/(ZrO2 + 10 mol % Y2O3) (YSZ) functional layer was studied. NiO/YSZ films with different NiO contents were deposited by reactive magnetron sputtering of Ni and Zr–Y targets. The elemental and phase composition of the films was adjusted by regulating oxygen flow rate during the sputtering. The resulting films were studied by scanning electron microscopy and X-ray diffractometry. Comparative tests of planar SOFCs with a NiO/YSZ anode support, NiO/YSZ functional nanostructured anode layer, YSZ electrolyte, and La0.6Sr0.4Co0.2Fe0.8O3/Ce0.9Gd0.1O2 (LSCF/CGO) cathode were performed. It was shown that the formation of a NiO/YSZ functional nanostructured anode leads to a 15–25% increase in the maximum power density of fuel cells in the working temperature range 500–800°C. The NiO/YSZ nanostructured anode layers lead not only to a reduction of the polarization resistance of the anode, but also to the formation of denser electrolyte films during subsequent magnetron sputtering of electrolyte.  相似文献   

18.
为探讨固体氧化物燃料电池(solid oxide fuel cell, SOFC)中干甲烷浓度对反应的影响,采用色谱在线测量阳极尾气,总结阳极尾气的变化规律。在此基础上,分析干甲烷在固体氧化物燃料电池Ni-YSZ阳极上的反应,寻找干甲烷浓度与电流对电池阳极反应影响的数学关系。结果表明,随着电流密度的增加,低浓度甲烷按顺序发生CH4+O2- → CO+2H2+2e-、CH4+2O2- → CO+H2O+H2 +4e-、CH4+3O2- → CO+2H2O + 6e-、CH4+4O2- → CO2+2H2O+8e-反应,高浓度甲烷只发生甲烷的第一个氧化反应,中浓度甲烷发生前两个或前三个反应。依据法拉第第一定律及反应物之间的关系,确定甲烷的低、中、高浓度的判定依据分别为:qv(CH4)≤I/(4F)、I/(4F)≤qv(CH4)≤I/(2F)、qv(CH4)≥I/(2F)。  相似文献   

19.
Journal of Solid State Electrochemistry - The conversion-alloying compounds have been identified as promising anode materials for sodium ion batteries (SIBs). One of them, SnO2, with an enormous...  相似文献   

20.
A novel multistep dip-coating method was developed and successfully applied to the fabrication of anode-supported microtubular solid oxide fuel cells (SOFCs) using carbon rods as combustible cores. The fabricated microtubular SOFCs consisted of Ni-yttria-stabilized zirconia (YSZ), YSZ, strontium-doped lanthanum manganite (LSM)–YSZ, and LSM as the anode, electrolyte, cathode, and cathode current collector materials, respectively. To investigate the role of anode porosity on cell performance, two types of anode supports were prepared: one without a pore former and the other with a 10 wt.% graphite pore former. The microstructural features of the microtubular SOFCs were examined using scanning electron microscope images whereas the electrochemical performance was characterized by electrochemical impedance spectroscopy measurements as well as IV characteristic curves. The results showed that the method used is a simple and low-cost alternative to conventional methods for the fabrication of microtubular SOFCs. We found that the anode porosity played an important role in improving the overall performance of the microtubular SOFC by reducing the concentration polarization.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号