首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
In this article, the self-similar wall jet over an impermeable, resting plane surface (the Glauert-jet) is considered. Through an analytic technique to solve nonlinear problems namely the homotopy analysis method, we obtain an explicit series solution for the Glauert-jet problem. This series solution converges efficiently to the closed-form solution found by Glauert in the whole region 0  ξ < +∞. In the frame of the homotopy analysis method, it is shown that the convergence region of the explicit series solution may be adjusted to obtain more accurate results.  相似文献   

2.
Many works study the integrability of the Bianchi class A cosmologies with k = 1, where k is the ratio between the pressure and the energy density of the matter. Here we characterize the analytic integrability of the Bianchi class A cosmological models when 0  k < 1. We conclude that Bianchi types VI0, VII0, VIII and IX can exhibit chaos whereas Bianchi type I is not chaotic and Bianchi type II is at most partially chaotic.  相似文献   

3.
This paper aims to present complete analytic solution to the unsteady heat transfer flow of an incompressible viscous fluid over a permeable plane wall. The flow is started due to an impulsively stretching porous plate. Homotopy analysis method (HAM) has been used to get accurate and complete analytic solution. The solution is uniformly valid for all time τ  [0, ∞) throughout the spatial domain η  [0, ∞). The accuracy of the present results is shown by giving a comparison between the present results and the results already present in the literature. This comparison proves the validity and accuracy of our present results. Finally, the effects of different parameters on temperature distribution are discussed through graphs.  相似文献   

4.
In this paper, an analytic technique, namely the homotopy analysis method, is employed to solve the Fisher equation, which describes a family of travelling waves with a front. The explicit series solution for all possible wave speeds 0 < c < +∞ is given. Such kind of explicit series solution has never been reported, to the best of author’s knowledge. Our series solution indicates that the solution contains an oscillation part when 0 < c < 2. The proposed analytic approach is general, and can be applied to solve other similar nonlinear travelling wave problems.  相似文献   

5.
Let ut  uxx = h(t) in 0  x  π, t  0. Assume that u(0, t) = v(t), u(π, t) = 0, and u(x, 0) = g(t). The problem is: what extra data determine the three unknown functions {h, v, g} uniquely? This question is answered and an analytical method for recovery of the above three functions is proposed.  相似文献   

6.
An operating system is subject to shocks that arrive according to a non-homogeneous Poisson process. As shocks occur the system has two types of failure: type I failure (minor) or type II failure (catastrophic). A generalization of the age replacement policy for such a system is proposed and analyzed in this study. Under such a policy, if an operating system suffers a shock and fails at age y (⩽t), it is either replaced by a new system (type II failure) or it undergoes minimal repair (type I failure). Otherwise, the system is replaced when the first shock after t arrives, or the total operating time reaches age T (0  t  T), whichever occurs first. The occurrence of those two possible actions occurring during the period [0, t] is based on some random mechanism which depends on the number of shocks suffered since the last replacement. The aim of this paper is to find the optimal pair (t1, T1) that minimizes the long-run expected cost per unit time of this policy. Various special cases are included, and a numerical example is given.  相似文献   

7.
Let Ay = f, A is a linear operator in a Hilbert space H, y  N(A)  {u : Au = 0}, R(A)  {h : h = Au, u  D(A)} is not closed, ∥fδ  f  δ. Given fδ, one wants to construct uδ such that limδ→0uδ  y = 0. Two versions of discrepancy principles for the DSM (dynamical systems method) for finding the stopping time and calculating the stable solution uδ to the original equation Ay = f are formulated and mathematically justified.  相似文献   

8.
Let Xn denote the state of a device after n repairs. We assume that the time between two repairs is the time τ taken by a Wiener process {W(t), t ? 0}, starting from w0 and with drift μ < 0, to reach c  [0, w0). After the nth repair, the process takes on either the value Xn?1 + 1 or Xn?1 + 2. The probability that Xn = Xn?1 + j, for j = 1, 2, depends on whether τ ? t0 (a fixed constant) or τ > t0. The device is considered to be worn out when Xn ? k, where k  {1, 2, …}. This model is based on the ones proposed by Rishel (1991) [1] and Tseng and Peng (2007) [2]. We obtain an explicit expression for the mean lifetime of the device. Numerical methods are used to illustrate the analytical findings.  相似文献   

9.
10.
The problem of heat and mass transfer in a power law, two-dimensional, laminar, boundary layer flow of a viscous incompressible fluid over an inclined plate with heat generation and thermophoresis is investigated by the characteristic function method. The governing non-linear partial differential equations describing the flow and heat transfer problem are transformed into a set of coupled non-linear ordinary differential equation which was solved using Runge–Kutta shooting method. Exact solutions for the dimensionless temperature and concentration profiles, are presented graphically for different physical parameters and for the different power law exponents 0 < n < 0.5 and for n > 0.5.  相似文献   

11.
We consider one-dimensional chain of coupled linear and nonlinear oscillators with long-range powerwise interaction defined by a term proportional to 1/∣n  mα+1. Continuous medium equation for this system can be obtained in the so-called infrared limit when the wave number tends to zero. We construct a transform operator that maps the system of large number of ordinary differential equations of motion of the particles into a partial differential equation with the Riesz fractional derivative of order α, when 0 < α < 2. Few models of coupled oscillators are considered and their synchronized states and localized structures are discussed in details. Particularly, we discuss some solutions of time-dependent fractional Ginzburg–Landau (or nonlinear Schrodinger) equation.  相似文献   

12.
Numerical simulation of magnetohydrodynamic (MHD) buoyancy-induced heat transfer and fluid flow has been analyzed in a non-isothermally heated square enclosure using finite volume method. The bottom wall of enclosure were heated and cooled with a sinusoidal function and top wall was cooled isothermally. Vertical walls of the enclosure were adiabatic. Effects of Rayleigh number (Ra = 104, 105 and 106), Hartman number (Ha = 0, 50 and 100) and amplitude of sinusoidal function (n = 0.25, 0.5 and 1) on temperature and flow fields were analyzed. It was observed that heat transfer was decreased with increasing Hartmann number and decreasing value of amplitude of sinusoidal function.  相似文献   

13.
The homotopy perturbation method is used to solve the nonlinear differential equation that governs the nonlinear oscillations of a system typified as a mass attached to a stretched elastic wire. The restoring force for this oscillator has an irrational term with a parameter λ that characterizes the system (0 ? λ ? 1). For λ = 1 and small values of x, the restoring force does not have a dominant term proportional to x. We find this perturbation method works very well for the whole range of parameters involved, and excellent agreement of the approximate frequencies and periodic solutions with the exact ones has been demonstrated and discussed. Only one iteration leads to high accuracy of the solutions and the maximal relative error for the approximate frequency is less than 2.2% for small and large values of oscillation amplitude. This error corresponds to λ = 1, while for λ < 1 the relative error is much lower. For example, its value is as low as 0.062% for λ = 0.5.  相似文献   

14.
In this work we consider a simple system of piecewise linear discontinuous 1D map with two discontinuity points: X = aX if ∣X < z, X = bX if ∣X > z, where a and b can take any real value, and may have several applications. We show that its dynamic behaviors are those of a linear rotation: either periodic or quasiperiodic, and always structurally unstable. A generalization to piecewise monotone functions X = F(X) if ∣X < z, X = G(X) if ∣X > z is also given, proving the conditions leading to a homeomorphism of the circle.  相似文献   

15.
The support of an [n, k] linear code C over a finite field Fq is the set of all coordinate positions such that at least one codeword has a nonzero entry in each of these coordinate position. The rth generalized Hamming weight dr(C), 1  r  k, of C is defined as the minimum of the cardinalities of the supports of all [n, r] subcodes of C. The sequence (d1(C), d2(C),  , dk(C)) is called the Hamming weight hierarchy (HWH) of C. The HWH, dr(C) = n  k + r;  r = 1, 2 , …, k, characterizes maximum distance separable (MDS) codes. Therefore the matrix characterization of MDS codes is also the characterization of codes with the HWH dr(C) = n  k + r; r = 1, 2,  , k. A linear code C with systematic check matrix [IP], where I is the (n  k) × (n  k) identity matrix and P is a (n  k) × k matrix, is MDS iff every square submatrix of P is nonsingular. In this paper we extend this characterization to linear codes with arbitrary HWH. Using this result, we characterize Near-MDS codes, Near-Near-MDS (N2-MDS) codes and Aμ-MDS codes. The MDS-rank of C is the smallest integer η such that dη+1 = n  k + η + 1 and the defect vector of C with MDS-rank η is defined as the ordered set {μ1(C), μ2(C), μ3(C),  , μη(C), μη+1(C)}, where μi(C) = n  k + i  di(C). We call C a dually defective code if the defect vector of the code and its dual are the same. We also discuss matrix characterization of dually defective codes. Further, the codes meeting the generalized Greismer bound are characterized in terms of their generator matrix. The HWH of dually defective codes meeting the generalized Greismer bound are also reported.  相似文献   

16.
In this paper we demonstrate new approach that can help in calculation of electrostatic potential of a fractal (self-similar) cluster that is created by a system of charged particles. For this purpose we used the simplified model of a plane dendrite cluster [1] that is generated by a system of the concentric charged rings located in some horizontal plane (see Fig. 2). The radiuses and charges of the system of concentric rings satisfy correspondingly to relationships: rn = r0ξn and en = e0bn, where n determines the number of a current ring. The self-similar structure of the system considered allows to reduce the problem to consideration of the functional equation that similar to the conventional scaling equation. Its solution represents itself the sum of power-low terms of integer order and non-integer power-law term multiplied to a log-periodic function [5], [6]. The appearance of this term was confirmed numerically for internal region of the self-similar cluster (r0  r  rN−1), where r0, rN−1 determine the smallest and the largest radiuses of the limiting rings correspondingly. The results were obtained for homogeneously (b > 0) and heterogeneously (b < 0) charged rings. We expect that this approach allows to consider more complex self-similar structures with different geometries of charge distributions.  相似文献   

17.
In the present paper, the wave propagation in one-dimensional elastic continua, characterized by nonlocal interactions modeled by fractional calculus, is investigated. Spatial derivatives of non-integer order 1 < α < 2 are involved in the governing equation, which is solved by fractional finite differences. The influence of long-range interactions is then analyzed as α varies: the resonant frequencies and the standing waves of a nonlocal bar are evaluated and the deviations from the classical (local) ones, recovered by imposing α = 2, are discussed.  相似文献   

18.
The soft collisions among fluid–fluid and fluid-wall molecules are modeled from first principles. In particular, the assumption of Maxwellian distribution of velocities for thermalized molecules, in both parallel and perpendicular directions to the wall, has been re-evaluated with supporting experimental and/or numerical evidence.It is proposed that the normal component of molecular velocity post collision is conserved for all fluid molecules. The slip effect at the wall boundary, introduced by the surface roughness, is accounted by an accommodation coefficient f. A moving least square method is used to calculate macroscopic velocity values. The influence of molecular interaction on the macroscopic velocity distribution is investigated at 40 MPa and 300 K for slit pore, inclined and stepped wall configurations. The accommodation coefficient values f = 0, 0.07, 0.257, 0.45, 0.681 and 1; and acceleration values ranging from zero to 1 × 1011 m/s2 and 250 × 1011 m/s2 are used for comparison.The distribution of macroscopic velocity parallel to the wall is studied to observe the effect of the slip behaviour. The detailed study of average of velocity values at various magnitudes of acceleration has shown an evidence of characteristic low and high speed of molecular flows that is considered as significant and a comparison is sought with an equivalent laminar and turbulent flow style behaviour. The two dimensional vector and contour plots of macroscopic velocity provide further insights in understanding Continuum velocity distributions resulting from molecular fluid-wall interaction at nanoscale. The research has highlighted the need to develop molecular dynamics simulation techniques for non-periodic boundary conditions.  相似文献   

19.
This work presents a numerical study on the turbulent flow of air with dispersed water droplets in separators of mechanical cooling towers. The averaged Navier-Stokes equations are discretised through a finite volume method, using the Fluent and Phoenics codes, and alternatively employing the turbulence models k ? ?, k ? ω and the Reynolds stress model, with low-Re version and wall enhanced treatment refinements. The results obtained are compared with numerical and experimental results taken from the literature. The degree of accuracy obtained with each of the considered models of turbulence is stated. The influence of considering whether or not the simulation of the turbulent dispersion of droplets is analyzed, as well as the effects of other relevant parameters on the collection efficiency and the coefficient of pressure drop. Focusing on four specific eliminators (‘Belgian wave’, ‘H1-V’, ‘L-shaped’ and ‘Zig-zag’), the following ranges of parameters are outlined: 1  Ue  5 m/s for the entrance velocity, 2  Dp  50 μm for the droplet diameter, 650  Re  8.500 for Reynolds number, and 0.05  Pi  5 for the inertial parameter. Results reached alternately with Fluent and Phoenics codes are compared. The best results correspond to the simulations performed with Fluent, using the SST k ? ω turbulence model, with values of the dimensionless scaled distance to wall y+ in the range 0.2 to 0.5. Finally, correlations are presented to predict the conditions for maximum collection efficiency (100 %), depending on the geometric parameter of removal efficiency of each of the separators, which is introduced in this work.  相似文献   

20.
Based on a new kind of analytic method, namely the Homotopy analysis method, an analytic approach to solve non-linear, chaotic system of ordinary differential equations is presented. The method is applied to Lorenz system; this system depends on the three parameters: σ, b and the so-called bifurcation parameter R are real constants. Two cases are considered. The first case is when R = 20.5 which corresponds to the transition region and the second case corresponds to R = 23.5 which corresponds to the chaotic region.The validity of the method is verified by comparing the approximation series solution with the results obtained using the standard numerical techniques such as Runge-Kutta method.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号