首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Flow past symmetrically located side branches mounted in a duct can give rise to pronounced flow oscillations due to coupling between separated shear layers and standing acoustic waves. The acoustically-coupled flows were investigated using digital particle image velocimetry (PIV) in conjunction with unsteady pressure measurements. Global instantaneous, phase- and time-averaged flow images were evaluated to provide insight into the flow physics during flow tone generation. Onset of the locked-on resonant states was characterized in terms of the acoustic pressure amplitude and frequency of the resonant pressure peak. Structure of the acoustic noise source was discussed in terms of patterns of generated acoustic power, which was evaluated by applying the vortex sound theory in conjunction with global quantitative flow imaging and numerical simulation of the acoustic field. In addition to the basic side branch configuration, the effect of bluff rectangular splitter plates located along the centerline of the main duct was investigated. The first mode of the shear layer oscillation was inhibited by the presence of the plates, which resulted in substantial reduction of the amplitude of acoustic pulsations and the strength of the acoustic source.  相似文献   

2.
Measurements were made in the near field of piston driven axisymmetric coaxial synthetic jets emanating from an orifice and a surrounding annulus of equal exit areas and cavity volumes. Piston velocity, amplitude, radial spacing between the orifice and the annulus, and exit angles had a strong influence on the dominant features of the flow. Flow visualization revealed three distinct topologies of the jet consisting of expanding, contracting and recirculating regions and doubling of the number of foci inside of the cavity compared to jet from the orifice alone. The direction of the swirl/rotation imposed on the mean flow was also dependent on the direction of the rotation of dominant foci. Interaction between flow from the orifice and the annulus amplified the azimuthal instability of ring vortices due to the periodic axial stretching and compression of the streamwise vortex filaments. Bifurcation of ring vortices into elliptical lobes reported earlier [S.V. Gaimella, V.P. Schroeder, Local heat transfer distributions in confined multiple air impingement, ASME Journal of Electronic Packaging 123 (3) (2001) 165–172] for single cavity jet was also observed in the coaxial jet. The number of cellular structures however was considerably larger than the single jet case. Large excursions of the jets from the plane of symmetry were observed. Power spectra exhibited sub-harmonic distribution of energy due to coalescence of the vortices. Growth of jet width and decay of centerline velocity were strongly influenced by the spacing and forcing frequency.  相似文献   

3.
This study, a continuation of an experimental program of research on isobaric coaxial jets [2], was primarily directed towards obtaining a more detailed picture of the flow structure, in particular by measuring the static pressure in the flow field of the jet with simultaneous visualization. It is shown that the nature of the axial static pressure distribution and the ignition lag are determined by the characteristics of the outer jet and are almost independent of the pressure ratio number (degree of underexpansion) of the inner nozzle and the rate of flow of fuel through it. The fuel forming the central jet self-ignites in a zone where not only the composition but also the temperature reach values corresponding to the ignition limits.Translated from Izvestiya Akademii Nauk SSSR, Mekhanika Zhidkosti i Gaza, No. 1, pp. 184–186, January–February, 1987.  相似文献   

4.
The effect of solid particles on the flow characteristics of axisymmetric turbulent coaxial jets for two flow conditions was studied. Simultaneous measurements of size and velocity distributions of continuous and dispersed phases in a two-phase flow are presented using a Phase Doppler Anemometry (PDA) technique. Spherical glass particles with a particle diameter range from 102 to 212 μm were used in this two-phase flow, the experimental results indicate a significant influence of the solid particles and the Re on the flow characteristics. The data show that the gas phase has lower mean velocity in the near-injector region and a higher mean velocity at the developed region. Near the injector at low Reynolds number (Re = 2839) the presence of the particles dampens the gas-phase turbulence, while at higher Reynolds number (Re = 11 893) the gas-phase turbulence and the velocity fluctuation of particle-laden jets are increased. The particle velocity at higher Reynolds number (Re = 11 893) and is lower at lower Reynolds number (Re = 2839). The slip velocity between particles and gas phase existed over the flow domain was examined. More importantly, the present experiment results suggest that, consideration of the gas characteristic length scales is insufficient to predict gas-phase turbulence modulation in gas-particle flows.  相似文献   

5.
A technique for numerically investigating resonators based on their exposure to broadband noise with a subsequent analysis of the input and output signal spectra is proposed. Resonance chambers connected with a waveguide through its wall are numerically investigated using both linear (linearized Euler equations) and nonlinear (Euler and Navier-Stokes equations) models. The general features of the linear resonance and the influence of nonlinear effects and dissipation on sound-absorbing properties are studied. The dependence of the resonator parameters on the presence of an axial flow and the boundary layer thickness is investigated for the model based on the Navier-Stokes equations.  相似文献   

6.
This article describes a comprehensive literature review of liquid entrainment in horizontal pipes with vertical-up branches. Deficiencies in the available data and correlations were identified. The Air–water Test Loop for Advanced Thermal–hydraulic Studies (ATLATS) was constructed and entrainment onset and steady-state data were collected for a wide range of flow conditions. Using new insights gained from experimental testing, the authors developed a model for predicting the onset of entrainment and steady-state entrainment rate. Previously published correlations, along with the new model, are compared against all available data. The new model shows very good agreement with the onset data, but is not very good at predicting branch quality at high liquid flow rates.  相似文献   

7.
Side forces on slender bodies of revolution at medium to high angles of attack (AOA > 30°) has been known from a large number of investigations. Asymmetric vortex pairs over a slender body are believed to be the principle cause of the side forces. Under some flight conditions, this side force may be as large as the normal force acting on the slender body. In this paper, experimental results are presented for side force control on a cone-cylinder slender body by using microfabricated balloon actuators. The micro balloon actuators are made of polydimethylsiloxane (PDMS) elastomer by using micro molding techniques. They can be packaged on curve surfaces of a cone-cylinder slender body. As actuator is actuated, the micro balloon actuator inflates about 1.2 mm vertically, which is about 2.4% of the cylinder diameter D (=50 mm) of the cone-cylinder slender body. Micro balloon actuators are actuated at different roll angles of a cone-cylinder slender body. Aerodynamic force measurement results indicate the effects of micro balloon actuators vary at different actuation locations on the cone-cylinder slender body. The side forces can be significantly reduced if the actuators are actuated in the weak vortex side (the side corresponding to the asymmetric vortex which is far from the surface) and actuation angles are located at about 50–60° (the actuation angle here is measured from stagnation line of the incidence plane toward weak vortex side direction). Significant changes are noticed from the surface pressure, as well as leeside vortex flow field, measurement. Micro balloon actuators change nose shapes of the slender body which decide adverse-pressure-gradient values and directly influence the origin of the separation lines and characteristics of the separated vortices over the leeside surface.  相似文献   

8.
High-Q torsional resonators constitute the most sensitive transducers for high frequency dynamic viscoelastic measurements of dilute polymer solutions. Most such resonators described in the literature are segmented. Because of the need for torque and torsional displacement transducers the Q-value of the individual segments most often differ, but normally all segments have the same radius.A detailed analysis of the dynamics of such resonators when both the radii, material properties and surrounding media may be different for each segment, is presented. For resonators where all segment lengths equal an integer multiple of a quarter of the torsional wavelength, we find that the Q-value of the resonator as a whole is mainly determined by the Q-value of the segment with the smallest radius. We further find that reduction of the radius of the segment surrounded by polymer solution results in a stronger mechanical coupling between the resonator as a whole and the polymer solution. These findings suggest that the segment radii are important optimization parameters of segmented torsional resonators used to measure the high frequency dynamic viscoelastic properties of e.g. polymer solutions.  相似文献   

9.
Experimental data are presented for the mass flow rate and quality of two-phase discharge through a small branch of diameter d (=6.35 mm) attached normally to an inclined flat plane. The flat plane was situated in a large tank containing a stratified mixture of air and water under pressure (316 kPa) and at room temperature. The plane was inclined through various angles (θ) in increments of 30°, from the outlet-branch orientation being vertically upward through the horizontal to vertically downward. The bulk of the data correspond to seven inclination angles and two test-section-to-separator pressure differences (ΔP) of 11.0 and 115.5 kPa, and for each combination of θ and ΔP, the mass flow rate and quality were measured at different values of the interface level (h) between the onsets of gas and liquid entrainment. Four additional data sets were generated for other values of ΔP in order to confirm certain trends. Influences of these independent variables on the mass flow rate and quality are discussed and normalized plots are presented showing that the data can be collapsed for a wide range of conditions. Comparisons are made between the present data and previous correlations/models and new empirical correlations are formulated and shown to be capable of predicting the present data with good accuracy.  相似文献   

10.
The phenomena of the onsets of liquid entrainment and gas entrainment were investigated experimentally for the case of a flat plane with a circular outlet branch of diameter d (=6.35 mm) at the plane centre. This flat plane was situated in a large tank containing a stratified mixture of air and water under pressure (317 kPa for most experiments and 520 kPa for a few experiments) and at room temperature. The plane was inclined through various angles (θ) in increments of 30°, from the outlet branch orientation being vertically upward through the horizontal to vertically downward. For both onsets the vertical distance between the centre of the outlet branch and the undisturbed gas–liquid interface (h) was measured for various angles of inclination and Froude numbers. Both onsets were observed visually through a large viewing part of the test section. It was found that for both onsets there is a range of inclination angles where the onset h depended on θ and a range where the onset h essentially did not depend on θ. The data were correlated in terms of onset h/d, Froude number, and θ where there was dependence of onset h on the angle of inclination.  相似文献   

11.
12.
13.
基于低雷诺数串置翼型气动特性研究   总被引:2,自引:0,他引:2  
基于低雷诺数,应用二维CFD方法,对串置翼型的气动特性进行了数值模拟。比较了串置翼型布局与常规单独翼型的升阻特性。分析了翼差角度对串置翼升阻特性的影响,并且在保持鸭翼±5°偏角不变的同时,研究了两翼之间的距离以及安装的相对高度对整个串置翼型升阻特性的影响。发现上鸭翼与主翼相结合具有相对较高的最大升力系数和临界迎角, 可以显著改善串置翼型的气动特性。  相似文献   

14.
A numerical analysis using a commercial CFD code, ANSYS CFX, was used to model two-phase flow discharging from a stratified region through a small branch of circular cross-section. The purpose of this study is to assess the capability of the code in predicting the pertinent flow parameters and to generate detailed results that can provide insights into some of the flow phenomena. The inhomogeneous, free surface model was used and the code predictions were evaluated by comparing results with previous correlation equations and experimental data. Results were obtained for the critical heights of the interface at the onsets of gas and liquid entrainment, as well as the mass flow rate and quality during two-phase discharge. Additional results including force balances and pressure contours were also analysed to provide insight into the flow characteristics just before the onsets of liquid and gas entrainment. All results are in good agreement with existing correlation equations and experimental data. CFD modelling is therefore a possible tool for predicting the correct results for discharging two-phase flow for the geometry under consideration; the computation time required to obtain converged results, however, was found to be excessive.  相似文献   

15.
We report on measurements of the velocity field and turbulence fluctuations in a hexagonal array of circular jets, impinging normally on a plane wall, using particle image velocimetry (PIV). Results for mean velocity and turbulent stresses are presented in various horizontal and vertical planes. From the measurements, we have identified some major features of impinging jet arrays and we discuss their mutual interaction, collision on the plate, and consequent backwash, which generate recirculating motion between the jets. The length of the jet core, the production of turbulence kinetic energy, and the model of the exhaust mechanisms for spent fluid are also discussed. The measurements indicated that the interaction between the self-induced cross flow and the wall jets resulted in the formation of a system of horseshoe-type vortices that circumscribe the outer jets of the array. The instantaneous snapshots of the velocity field reveal some interesting features of the flow dynamics, indicating a breakdown of some of the jets before reaching the plate, which may have consequences on the distribution of the instantaneous heat transfer.List of symbols Dm Nozzle diameter in multiple jet array nozzle plate (m) - Ds Pipe diameter in single jet rig (m) - H Distance between nozzle and impingement plate (m) - k Turbulent kinetic energy (m2/s2) - L Pipe length (m) - Pk Production of turbulent kinetic energy (m2/s3) - Puu , Pvv Normal components of Pk (m2/s3) - Puv Shear component of Pk (m2/s3) - s Pitch (m) - Ubulk Surface-averaged exit velocity (single jet) (m/s) - UCL Center line jet exit velocity (jet array), m/s - u, v Mean velocity components in x and y directions (m/s) - u, v, w Instantaneous velocity in x, y, and z directions (m/s) - u, v, w Velocity fluctuation in x, y, and z directions (m/s) - u2, v2, w2 Reynolds normal stress components (m2/s2) - uv Reynolds shear stress component (m2/s2) - x, z Coordinates parallel to impingement plate (m) - y Coordinate perpendicular to impingement plate (m)  相似文献   

16.
The experimental investigation of the laws of friction at high relative speeds involves difficulties associated with ensuring that the experimental apparatus provides a sufficiently long slide path. In this paper an automated experimental apparatus is described. This makes it possible to study in a compact fashion the laws of fluid friction at speeds of approximately 150 m/sec under widely variable load and external pressure. The experimental relations for the friction moment coefficient for water in the laminar and turbulent regimes are compared with calculations made by the integral relations method of boundary layer theory. The results of series of experimental and theoretical studies of high-speed friction against ice in the developed fusion layer regime are presented. Questions of the effectiveness of using polymer additives to reduce friction at high speeds are considered. The experimental method described can be used to investigate friction problems involving pastes, emulsions, and other rheologically complex continuous media, in which under conditions of high velocity gradients (strain rates) qualitatively new effects are to be expected.Moscow. Translated from Izvestiya Rossiiskoi Akademii Nauk, Mekhanika Zhidkosti i Gaza, No. 3, pp. 74–82, May–June, 1994.  相似文献   

17.
18.
19.
The effect of various methods for producing a fast shaped-charge jet on the jet velocity is studied. Experimental results allow one to optimize the process of formation of fast shapedcharge jets. Spectra of a copper jet are obtained, and its temperature is determined. It is shown that fast copper shaped-charge jets can be used for quasi-cw lasing. Lavrent’ev Institute of Hydrodynamics, Siberian Division, Russian Academy of Sciences, Novosibirsk 630090. Translated from Prikladnaya Mekhanika i Tekhnicheskaya Fizika, Vol. 41, No. 5, pp. 62–67, September–October, 2000.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号