首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
L 《Polyhedron》2006,25(18):3481-3487
Lithium 2-thienyltellurolate, generated from 2-thienyl lithium, reacts at −78 °C in THF with chloroethyl ethyl sulfide to give a (Te, S) ligand 1-ethylthio-2-[2-thienyltelluro]ethane (L) as a red oil. The complexes [PdCl2(L)] (1), [PtCl2(L)] (2), [Ag(L)2][ClO4] (3) and [CuBr(L)]2 (4) were synthesized. The complex [HgCl2(L)] on crystallization decomposed giving Th2TeCl2 (5) [where Th = 2-thienyl], which was characterized by X-ray diffraction on its single crystals. The ligand L and complexes 1–4 exhibit proton and carbon-13 NMR spectra, which are characteristic. The coordination through Te in 1–4 is indicated by downfield coordination shifts in the position of the TeCH2 signal of L. Complex 1 was characterized by X-ray diffraction on its single crystals. The geometry around Pd is square planar. The Pd–Te, Pd–S and Pd–Cl bond lengths are 2.5040(4), 2.273(1) and 2.322(1)/2.380(1) Å, respectively. There are intermolecular interactions between Te (coordinated to Pd) and Cl, and sulfur and Cl. The Te–Cl and S–Cl distances, 3.401 and 3.488 Å, respectively, are shorter than the sum of the van der Waal’s radii (3.81 and 3.55 Å, respectively). The Pd–Pd distance between the two molecules is 3.4156(6) Å, greater than the sum of van der Waal’s radii (3.26 Å). The structure of 5 is typical of that of a tellurium(IV) compound (saw-horse type). The two Te–Cl bond lengths are identical, 2.480(1) Å. The geometry around Te in 5 can be best described as pseudo tetrahedral (trigonal bipyramidal with a lone pair on one corner of the triangle).  相似文献   

2.
Raman Batheja  Ajai K. Singh 《Polyhedron》1997,16(24):4337-4345
The nucleophile [ArTe] generated in situ borohydride solution of Ar2Te2, reacts with 2-(chloromethyl) tetrahydrofuran and 2-(2-bromoethyl)-1,3-dioxolane resulting in L1 and L2, respectively. The complexes of palladium(II) and platinum(II) with L1/L2 having stoichiometries [MCl2·L2], [ML2](ClO4)2, [(DPPE)ML2](ClO)4)2, [(PPh3)2ML2](ClO4)2 and [(phen)ML2](ClO4)2 (where L = L1/L2 DPPE = Ph2PC H2CH2PPh2, PHEN = 1,10-phenanthroline and M = Pd/Pt) have been synthesized. IR, 1H, 125Te{1H} and 31P{1H} NMR and UV-vis spectral data of these species in conjunction with their molar conductance and molecular weight data have been used to authenticate the new species. In all complexes (1–20) the ligands L1 and L2 are coordinated through tellurium and in the complexes of formula [ML2](ClO4)2 (M = Pd, Pt) the ligand is bidentate with the oxygen atom used in complexation. In solution, complexes PtCl2L2 exist as a mixture of cis and trans isomers whereas only the trans isomer was observed for the palladium analogues. The [(phen)PdL2](ClO4)2(Q) quenches 1O2 readily. The plot of log [Q] vs time is linear. Mechanism compatible with the experimental observations is proposed.  相似文献   

3.
We have synthesized in a single-step procedure from available copper(I) precursor at RT two Cu(I) thiolato clusters of the formula [Cu4(μ-SCH(CH3)2)6]2− and [Cu5(μ-SC(CH3)3)6] as revealed by X-ray crystallography, where increased steric bulk leads to a bigger cage with some two-coordinate metal centers. In addition, we identified a mononuclear two coordinate thiolato complex with the bulkier ligand, of the formula NEt4[Cu(SC(CH3)3)2]. This is only the second example of such a complex of an aliphatic ligand that is structurally characterized. The X-ray structure reveals an S–Cu–S angle of 176.7–179.5°, with Cu–S distances of 2.14 Å.  相似文献   

4.
Four novel tetranuclear macrocyclic complexes of the formula [(CuLi)3Fe](ClO4)3·3H2O (i=1–4, Li are the dianions of the [14]N4 and [15]N4 macrocyclic oxamides, namely 2,3-dioxo-5,6:13,14-dibenzo-7,12-bis(ethoxycarbonyl)-1,4,8,11-tetraazacyclotetradeca-7,11-diene, 2,3-dioxo-5,6:13,14-dibenzo-9-methyl-7,12-bis(ethoxycarbonyl)-1,4,8,11-tetraazacyclotetradeca-7,11-diene and 2,3-dioxo-5,6:14,15-dibenzo-7,13-bis(ethoxycarbonyl)-1,4,8,12-tetraazacyclotetradeca-7,12-diene] have been prepared and characterized. These complexes are the first examples of oxamido-bridged Cu(II)–Fe(III) heterometallic species. Cryomagnetic studies on [(CuL1)3Fe](ClO4)3·3H2O (1) and [(CuL3)3Fe](ClO4)3·3H2O (3) (77–300 K) revealed that the Cu(II) and Fe(III) ions interact antiferromagnetically through the oxamido bridge, with the exchange integral J=−30.8 cm−1 for 1 and J=−28.7 cm−1 for 3 based on . The interaction parameters have been compared with that of the related [Cu3Mn] compound.  相似文献   

5.
Mononuclear copper(II) complexes of a family of pyridylmethylamide ligands HL, HLMe, HLPh, HLMe3 and HLPh3, [HL = N-(2-pyridylmethyl)acetamide; HLMe = N-(2-pyridylmethyl)propionamide; HLPh = 2-phenyl-N-(2-pyridylmethyl)acetamide; HLMe3 = 2,2-dimethyl-N-(2-pyridylmethyl)propionamide; HLPh3 = 2,2,2-triphenyl-N-(2-pyridylmethyl)acetamide], were synthesized and characterized. The reaction of copper(II) salts with the pyridylmethylamide ligands yields complexes [Cu(HL)2(OTf)2] (1), [Cu(HLMe)2](ClO4)2 (2), [Cu(HL)2Cl]2[CuCl4] (3), [Cu(HLMe3)2(THF)](OTf)2 (4), [Cu(HLMe3)2(H2O)](ClO4)2 (5a and 5b), [Cu(HLPh3)2(H2O)](ClO4)2 (6), [Cu(HL)(2,2′-bipy)(H2O)](ClO4)2 (7), and [Cu(HLPh)(2,2′-bipy)(H2O)](ClO4)2 (8). All complexes were fully characterized, and the X-ray structures vary from four-coordinate square-planar, to five-coordinate square-pyramidal or trigonal-bipyramidal. The neutral ligands coordinate via the pyridyl N atom and carbonyl O atom in a bidentate fashion. The spectroscopic properties are typical of mononuclear copper(II) species with similar ligand sets, and are consistent their X-ray structures.  相似文献   

6.
A novel N6 macrocyclic ligand, L1 (2,8,14,20-tetramethyl-3,7,15,19,25,26-hexaaza-tricyclo[19.3.1.19,13]hexacosa-1(24),9,11,13(26),21(25),22-hexaene), was obtained by reduction of the 2 + 2 condensation product of 2,6-diacetylpyridine and propane-1,3-diamine. Zinc(II) complexes of L1, of a related N8 macrocycle, L3 (3,6,9,17,20,23,29,30-octaaza-tricyclo[23.3.1.1[11,15]]triaconta-1(28),1,13,15(30),25(29),26-hexaene), similarly prepared by 2 + 2 condensation of 2,6-diformylpyridine and diethylenetriamine and of a tetra N-2-cyanoethyl derivative of a homologue of L1 prepared from diformyl pyridine and ethane-1,2-diamine, L2 (3-[6,14,17-tris-(2-cyano-ethyl)-3,6,14,17,23,24-hexaaza-tricyclo[17.3.1.18,12] tetracosa-1(23),8(24),9,11,19,21-hexaen-3-yl]-propionitrile), were prepared. Structures were determined for [ZnL1](ClO4)2 · H2O, [ZnL2](NO3)2 and [Zn2L3(NO3)2](NO3)2 · H2O. The [ZnL1](ClO4)2 · H2O and [ZnL2](NO3)2 complexes present a mononuclear endomacrocyclic structure with the metal in an octahedral distorted environment coordinated by the six donor nitrogen atoms from the macrocyclic backbone while the complex [Zn2L3(NO3)2](NO3)2 · H2O is dinuclear with both metal atoms into the macrocyclic cavity coordinated by four donor nitrogen atoms from the macrocyclic framework and one oxygen atom from one monodentate nitrate anion, in a distorted square pyramidal arrangement.  相似文献   

7.
Reaction of potassium 3{5}-(3′,4′-dimethoxyphenyl)pyrazolide with 2-bromopyridine in diglyme at 130°C for 3 days followed by an aqueous quench, affords 1-{pyrid-2-yl}-3-{3′,4′-dimethoxyphenyl}pyrazole (L2) in 69% yield after recrystallization from hot hexanes. Complexation of [Cu(NCMe)4]BF4 by 2 molar equivalents of 1-{pyrid-2-yl}-3-{2′,5′-dimethoxyphenyl}pyrazole (L1) or L2 in MeCN at room temperature, followed by concentration and crystallisation with Et2O, gives [Cu(L)2]BF4 L = L1, L2) in good yields. Treatment of AgBF4 with L1 or L2 in MeNO2 similarly gives [Ag(L)2]BF4 L = L1, L2); reaction of AfBF4 with L2 in MeCN gives a product of stoichiometry [Ag(L2)(NCMe)]BF4. The 1H NMR spectra of the [M(L)2]BF4 complexes show peaks arising from a single coordinated environment. The single crystal X-ray structure of [Cu(L1)2]BF4 shows a tetrahedral complex cation with Cu---N = 2.011(8), 2.036(8), 2.039(8), 2.110(8) Å. The CuI centre is close to tetrahedral, the dihedral angle between the least-squares planes formed by the Cu atom and the N donor atoms of the two ligands being 88.3(3)°. Complexation of hydrated Cu(BF4)2 by L2 in MeCN at room temperature yields [Cu(L2)2](BF4)2. The cyclic voltammograms of the three AgI complexes in MeCN/0.1 M Bu4n NPF6 are suggestive of extensive ligand dissociation in this solvent.  相似文献   

8.
The hybrid S/N/S donor ligands 2,6-bis(methylthiomethyl)pyridine (L1) and 2,6-bis(p-tolylthiomethyl)pyridine (L2) react with the [M(CO)5(THF)] (M = Mo or W) compounds to form complexes of general formula [M(CO)4L] (M = Mo, L = L2; M = W, L = L1 or L2), where both L1 and L2 act in a S/N bidentate chelate fashion. In solution, these complexes undergo three fluxional processes, viz. inversion at the coordinated S atom, S1–S2 switching, and combined inversion and S1–S2 switching, leading to an interconversion of the four possible permutational isomers. Energy barriers for all three processes have been evaluated by standard one-dimensional band-shape analysis techniques. The mechanism of the S1–S2 switch is discussed.  相似文献   

9.
The complexes formed from copper(II) and 2-(5-bromo-2-pyridylazo)-5-diethylaminophenol (5-Br-PADAP or HL) in aqueous methanol solution was studied by electrospray ionization mass spectrometry. The solution of a 1:1 complex of Cu(II) with 5-Br-PADAP showed five peaks assignable to a binuclear complex [Cu2L2(AcO)]+ and mononuclear complexes [CuL]+, [CuL(H2O)]+, [CuL(AcOH)]+ and [CuL(HL)]+ (AcO=acetate). Collision activated dissociation revealed the relative order of bonding strengths; Cu–L>Cu–HL>CuL–AcOH>CuL–H2O. The peak intensities of the binuclear complex showed second-order dependency on those of the mono complex. As for the solution of Ni(II)–5-Br-PADAP, no binuclear complex was observed in the mass spectra. Thus, it was suggested that [Cu2L2(AcO)]+ was formed by the fast gas phase reaction: 2[CuL]++AcO[Cu2L2(AcO)]+.  相似文献   

10.
A series of penta-coordinated CoII complexes of 1,4-diazacycloheptane (DACH) functionalized by additional imidazole or pyridine donor pendants, [CoL1Cl](ClO4)·H2O (1), [CoL2Cl](ClO4) (2) and [CoL3Cl](ClO4)·CH3OH (3), where L1=1,4-bis(imidazole-4-ylmethyl)-DACH, L2=1,4-bis(N-1-methylimidazol-2-ylmethyl)-DACH and L3=1,4-bis(pyridyl-2-ylmethyl)-DACH have been synthesized and characterized by elemental analyses, IR and UV–Vis spectra. In all the mononuclear complexes, each CoII center is penta-coordinated to four nitrogen donors of the ligand and one axial chloride anion. The crystal structure of complex 2 has been determined by X-ray diffraction analysis, which forms a one-dimensional linear structure through inter-molecular C–HCl and C–HO hydrogen-bonding.  相似文献   

11.
We have systematically investigated the structural features, electronic properties, thermally-induced structural phase transitions and absorption spectra depending on the solvent for ten Cu(II) complexes with 3,5-halogen-substituted Schiff base ligands. Structural characterization of two new complexes, bis(N-R-1-phenylethyl- and N-R,S-2-butyl-5-bromosalicydenaminato-κ2N,O)copper(II), reveals that they afford a compressed tetrahedral trans-[CuN2O2] coordination geometry with trans-N–Cu–N = 159.4(2)° and trans-O–Cu–O = 151.7(3)° for the 1-phenylethyl complex and trans-N–Cu–N = 157.9(3)° and trans-O–Cu–O = 151.0(3)° for the 2-butyl one. All the complexes exhibit a structural phase transition by heating in the solid state regardless of their structures at room temperature. The absorption spectra of a series of ten complexes exhibit a slight shift of the d–d band at 16 000–20 000 cm−1 and remarkable shift of the π–π* band at 24 000–28 000 cm−1, which suggests that the dipole moment of the solvents presumably affects the conformation of the π-conjugated moieties of the ligands rather than the coordination environment. We have also attempted ‘photochromic solute-induced solvatochromism’ by a system of bis(N-R-1-phenylethyl-3,5-dichlorosalicydenaminato-κ2N,O)copper(II) and photochromic 4-hydroxyazobenzene in chloroform solution. We successfully observed a change of the d–d and π–π* bands of the complex in the absorption spectra caused by cistrans photoisomerization of 4-hydroxyazobenzene.  相似文献   

12.
The reaction of 1,2-bis(diphenylthioylphosphino)hydrazine (L) with copper(I) and mercury(II) halides affords the complexes, [{CuLX}2] (X = I, Br or Cl), [HgLX2] (X = Cl or Br) and the tetrametallic complex, [{L(HgI2)2}2]. Single crystal X-ray structures have been performed on the uncoordinated ligand, L, as well as the complexes [{CuLX}2] (X = I, Br and Cl), [HgLBr2] and [{L(HgI2)2}2. The molecules of L exist as dimers as a result of pairs of N–HS hydrogen bonds. The copper(I) complexes are centrosymmetric dimetallic species, the two copper atoms being bridged by L and the X atoms. In all cases the coordination sphere around the Cu atoms is approximately trigonal pyramidal with an ‘S2X2’ donor set. The complex, [HgLBr2], is a distorted tetrahedral monomer with an ‘S2Br2’ donor set and L acting as a bidentate thus forming a seven-membered chelate ring. The tetramercury iodo complex, [{L(HgI2)2}2], contains two ‘L(HgI2)2’ units linked centrosymmetrically via an I atom from each moiety. The geometry around the Hg atoms is distorted tetrahedral. The influence of hydrogen bonding between the hydrazine backbone hydrogens of L and the coordinated halide ions in for the structures of the metal complexes is discussed.  相似文献   

13.
The study of the reactivity of R---CH=N---(C6H4-2-SMe) with R=C6H5 or 2,4,6-Me3-C6H2 with palladium(II) salts is reported. These studies have allowed us to prepare and characterize the coordination complexes: cis-[Pd{R---CH=N---(C6H4-2-SMe)}Cl2] {R=C6H5 or 2,4,6-Me3-C6H2} and the cyclopalladated compounds [Pd{C6H4---CH=N---(C6H4-2-SMe)}Cl] and [Pd{(2-CH2-4,6-Me2-C6H2)---CH=N---(C6H4-2-SMe)}Cl]. The X-ray crystal structures of the latter complexes reveal that the thioimines act as a [Csp2, phenyl,N,S] and as a [Csp3, N,S] terdentate group, respectively. The study of the reactions of the cyclopalladated compounds with PPh3 is also reported.  相似文献   

14.
[CuL·B]q model systems, where L2− is the tridentate Schiff base ligand formed by the condensation of salicylaldehyde with alanine, B is imidazole, q=−1, 0 and +1, are optimized at B3LYP/6-31G* level of theory. Their electronic structure is described in terms of Mulliken population analysis and reactivity indices of Fukui. The total energy of [CuL·B]q species increases with the electron removal. The reactivity indices suitable for the alcohol (sugar) adducts formation (CuOsugar and OphenoxylHsugar interactions) are in the neutral molecule as well as in the singlet cation. Despite the similar trends in Cu–Ophenoxyl bonding and significant Ophenoxyl spin density in triplet cation, the catalytic mechanism of sugars oxidation proposed for the galactose oxidase cannot be used in our system because the [CuL·B]+ formation is energetically unfavorable. The imidazole nitrogen deprotonation is more probable than of the alanine ternary carbon atom.  相似文献   

15.
氮氧杂链型配体合成与Cu(Ⅱ)和Zn(Ⅱ)配位性质研究   总被引:2,自引:1,他引:1  
合成了4种氮氧杂链型配体N,N'-二-(2-羟乙基)-乙二胺(L1)、N-(2-羟基苄基)-丙醇胺(HL2)、N-(2-羟乙基)-N'-(2-羟基苄基)-乙二胺(HL3)和N-(2-羟乙基)-二乙三胺-(L4),通过元素分析、IR和1H NMR等手段表征了其结构,用pH电位滴定法在25℃、I=0.10(KNO3)条件下,测定了L1和HL2与Cu(Ⅱ)离子以及HL3和L4与Zn(Ⅱ)离子配位平衡常数.结果表明:L1和HL2与Cu(Ⅱ)离子配位时,均可生成四配位配合物,其中第三配位点醇羟基配位较强,其质子离解常数pKa1分别为7.28和7.32;第四配位点是第2个醇羟基或1个水分子配位,其pKa2分别为9.33和9.04;HL3和L4与Zn(Ⅱ)均可生成五配位配合物,第四配位点均为醇羟基,其离解常数pKa1分别为7.76和7.96,第五配位点均为H2O,其pKa2分别为9.47和9.57.从上述热力学结果可见,配合物在中性pH值范围能生成亲核试剂Cu(Ⅱ)…-OR或Zn(Ⅱ)…-OR,而且均具备双重催化酯类底物水解的条件.  相似文献   

16.
The reaction of copper(II) acetate or fluoride with classic dioximes in the presence of 1,2-bis(4-pyridyl)ethane resulted in four novel compounds with the compositions [Cu2(dmgH)4bpe] (1), [Cu2(NioxH)4bpe] (2), [Cu2(dpgH)4bpe] (3), and [Cu2(dpgH)4bpe][Cu(dpgH)2bpe]2·2DMF (4) (where dmgH2 = dimethylglyoxime, NioxH2 = 1,2-cyclohexanedionedioxime, dpgH2 = diphenylglyoxime, bpe = 1,2-bis(4-pyridyl)ethane, and DMF = N,N′-dimethylformamide), whose crystal structures were determined by single crystal X-ray diffraction. In the binuclear molecules 1-3, as well as in both binuclear and mononuclear molecules in 4 each Cu(II) atom has an identical N5-environment formulated by four oximic nitrogen atoms of two monodeprotonated ligands in a slightly distorted square planar mode, and the nitrogen atom of the bpe molecule being in the apical position. The new compounds were characterized by elemental analysis, IR spectroscopy and single-crystal X-ray diffraction. Luminescence investigations for 1, 2 and 4 were carried out to clarify whether the guest inclusion in the crystal lattice is accompanied by changes in the emission spectra.  相似文献   

17.
In this work, the experimental vapor pressures of four amines 1,2-bis(dimethylamino)ethane, 1-methylmorpholine, 1,2-bis(2-aminoethoxy)ethane and N-benzylethanolamine using a static apparatus are reported. The temperature range is comprised between 273.18 and 364.97 K and the pressure range between 0.782 Pa and 333 kPa. The molar enthalpies of vaporization at 298.15 K were calculated from Clausius–Clapeyron equation fitted on the experimental results.  相似文献   

18.
Two new coordination polymers of copper(I) chloride and pyrazinic acid (pyz-H), namely [CuCl(pyz-H)2]·2H2O (1) and [Cu2Cl2(pyz)(H2O)]·H2O (2) have been prepared and characterized by spectroscopic, magnetic and crystallographic methods. The overall physical measurements suggest that 1 is diamagnetic and contains monodentate N-pyrazinic acid, whereas 2 is paramagnetic and contains tridentate N,N′,O- chelating bridging pyrazinato anion. In the structure of 1 as elucidated by X-ray single crystal analysis, the asymmetric units [CuCl(pyz)2] are linked together forming a zigzag chain with tetrahedral copper(I) environment. The two lattice water molecules form hydrogen bonds with the uncoordinated N atom and carboxylate group O atom of pyz-H molecules. The Cu–N bond lengths are 2.009(6) Å and Cu–Cl distances are 2.337(2) Å. Complex 2 has a three-dimensional structure with the chains [Cu(I)Cu(II)(C5H3N2O2)Cl2(H2O)] interconnected by [Cu(I)Cl2N] tetrahedral unit and [Cu(II)NO2Cl2] polyhedra. The Cu(I)–Cl and Cu(I)–N distances are 2.327(2)–2.581(2) Å and 1.988(6) Å, respectively, whereas the Cu(II)–Cl and Cu(II)–N bond lengths are 2.258(2), 2.581(2) Å, and 2.017(6) Å, respectively. Hydrogen bonds of the type O–HO are formed between lattice and coordinated water, and carboxylate oxygens of pyrazinato ligand giving rise to a three-dimensional network. The Cl anions act as bridging ligands in both complexes. The magnetic data of complex 2 have been measured from 2 to 300 K and discussed.  相似文献   

19.
《Polyhedron》2001,20(28):306-3306
Five new complexes of composition [Cu(dpt)Ni(CN)4] (1) (dpt=dipropylenetriamine), [Cu(dien)Ni(CN)4]·2H2O (2) (dien=diethylenetriamine), [Cu(N,N′-dimeen)Ni(CN)4]·H2O (3) (N,N′-dimeen=N,N′-dimethylethylenediamine), [Cu(N,N-dimeen)Ni(CN)4]·H2O (4) (N,N-dimeen=N,N-dimethylethylenediamine) and [Cu(trimeen)Ni(CN)4] (5) (trimeen=N,N,N′-trimethylethylenediamine) have been obtained by the reactions of the mixture of Cu(ClO4)2·6H2O, appropriate amine and K2[Ni(CN)4] in water and have been characterized by IR and UV–Vis spectroscopies and magnetic measurements. The crystal structure of [Cu(dpt)Ni(CN)4] (1) has been determined by single-crystal X-ray analysis. The structure of 1 consists of a one-dimensional polymeric chain ---Cu(dpt)---NC---Ni(CN)2---CN---Cu(dpt)--- in which the Cu(II) and Ni(II) atoms are linked by CN groups. The nickel atom is four coordinate with four cyanide-carbon atoms (two cyano groups are terminal and two cyano groups (in cis fashion) are bridged) in a square-planar arrangement and the copper atom is five coordinate with two cyanide-nitrogen and three dpt-nitrogen atoms, in a distorted square-pyramidal arrangement. The temperature dependence of magnetic susceptibility (2–300 K) was measured for compound 1. The magnetic investigation showed the presence of a very weak antiferromagnetic interaction (J=−0.16 cm−1) between the copper atoms within each chain through the diamagnetic Ni(CN)4 2− ions.  相似文献   

20.
Two new cadmium(II)–terephthalate complexes, 1{[Cd2(μ-terephthalate)2(L1)2]·9H2O} (1) and [{Cd(H2O)(L2)}2(μ-terephthalate)](terephthalate) · 10H2O (2), where L1 = (E)-N1,N1-diethyl-N2-(1-(pyridin-2-yl)ethylidene)ethane-1,2-diamine; L2 = N,N′-bis-(1-pyridin-2-yl-ethylidene)-ethane-1,2-diamine; have been synthesized by a conventional solution method. Characterization by single crystal X-ray crystallography shows that compound 1 is composed of 1-D polymeric zig-zag chains with distorted pentagonal-bipyramidal cadmium centers. Compound 2 consists of centrosymmetric dinuclear complexes with a distorted pentagonal-bipyramidal cadmium center in which one terephthalate ligand bridges the metal centres and another terephthalate anion with water of crystallization forms a H-bonding network.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号