首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 671 毫秒
1.
The active damping of the resonant vibrations of a hinged flexible viscoelastic rectangular plate with distributed piezoelectric sensors and actuators is considered. It is shown that it is possible to considerably decrease the amplitude of resonant vibrations by choosing the appropriate feedback factor. The collective effect of geometrical nonlinearity and dissipative properties of the material on the effectiveness of active damping of the resonance vibrations of rectangular plates with sensors and actuators is analyzed  相似文献   

2.
As an extension of the wavelet approach to vibration control of piezoelectric beam-type plates developed earlier by the authors,this paper proposes a hybrid activepassive control strategy for suppressing vibrations of laminated rectangular plates bonded with distributed piezoelectric sensors and actuators via thin viscoelastic bonding layers.Owing to the low-pass filtering property of scaling function transform in orthogonal wavelet theory,this waveletbased control method has the ability to automatically filter out noise-like signal in the feedback control loop,hence reducing the risk of residual coupling effects which are usually the source of spillover instability.Moreover,the existence of thin viscoelastic bonding layers can further improve robustness and reliability of the system through dissipating the energy of any other possible noise induced partially by numerical errors during the control process.A simulation procedure based on an advanced wavelet-Galerkin technique is suggested to realize the hybrid active-passive control process.Numerical results demonstrate the efficiency of the proposed approach.  相似文献   

3.
The active damping of the resonant vibrations of a flexible cylindrical panel with rectangular planform and clamped edges is considered. The damping is done with distributed piezoelectric sensors and actuators. It is shown that the amplitude of the resonant vibrations can be substantially decreased by choosing the appropriate feedback factors. The combined effect of geometrical nonlinearity and dissipative properties of the material on the effectiveness of damping is analyzed  相似文献   

4.
The paper discusses the active damping of the resonant flexural vibrations of a clamped thermoviscoelastic rectangular plate with distributed piezoelectric sensors and actuators. The thermoviscoelastic behavior of the passive and active materials is described using the concept of complex characteristics. The interaction of the mechanical and thermal fields is taken into account. The Bubnov–Galerkin method is used. The effect of self-heating, the dimensions of the piezoelectric inclusions, and the feedback factor on the effectiveness of active damping of the resonance vibrations of the plate is studied  相似文献   

5.
The paper discusses the active damping of the resonant flexural vibrations of a hinged thermoviscoelastic rectangular plate with distributed piezoelectric sensors and actuators. The thermoviscoelastic behavior of the passive and active materials is described using the concept of complex characteristics. The interaction of mechanical and thermal fields is taken into account. The Bubnov–Galerkin method is used. The effect of dissipative heating, the dimensions of the piezoelectric inclusions, and the feedback factor on the effectiveness of active damping of resonance vibrations of the plate is studied  相似文献   

6.
The basic equations of the theory of thermoviscoelastic thin-walled plates with piezoelectric sensors and actuators under monoharmonic mechanical and electric loading are derived using the Kirchhoff–Love hypotheses. The thermomechanical behavior of passive and piezoactive materials is described using the concept of complex characteristics. Methods of solving nonlinear problems of active damping of thermomechanical vibrations of plates with sensors and actuators are considered. The effect of dissipative heating on the damping of axisymmetric vibrations of a thermoviscoelastic solid circular plate is analyzed as an example  相似文献   

7.
International Applied Mechanics - The problem of the forced resonant vibrations and dissipative heating of a hinged thermoviscoelastic cylindrical shell with piezoelectric actuators and sensors is...  相似文献   

8.
An analytical solution for the cylindrical bending vibrations of linear piezoelectric laminated plates is obtained by extending the Stroh formalism to the generalized plane strain vibrations of piezoelectric materials. The laminated plate consists of homogeneous elastic or piezoelectric laminae of arbitrary thickness and width. Fourier basis functions for the mechanical displacements and electric potential that identically satisfy the equations of motion and the charge equation of electrostatics are used to solve boundary value problems via the superposition principle. The coefficients in the infinite series solution are determined from the boundary conditions at the edges and continuity conditions at the interfaces between laminae, which are satisfied in the sense of Fourier series. The formulation admits different boundary conditions at the edges of the laminated piezoelectric composite plate. Results for laminated elastic plates with either distributed or segmented piezoelectric actuators are presented for different sets of boundary conditions at the edges.  相似文献   

9.
An approach to the active damping of the forced resonant vibrations of orthotropic thermoviscoelastic plates with distributed sensors and actuators is proposed. The mechanical load is assumed unknown and is determined from the sensors’ indications. The problem of active damping of an isotropic thermoviscoelastic rectangular plate with hinged edges is solved as an example. A formula for the voltage to be applied to the actuator to damp the forced vibrations in the first mode is derived. The effect of the dimensions of the sensor and actuator and the dissipative properties of the materials on the effectiveness of active damping is studied  相似文献   

10.
The paper addresses the active damping of the resonant flexural vibration of a clamped viscoelastic rectangular plate with distributed piezoelectric actuators. The thermomechanical behavior of passive and active materials is described using the concept of complex characteristics. The interaction of the mechanical and thermal fields is taken into account. To solve the problem, the variational and Bubnov–Galerkin methods are used. The effect of the temperature of dissipative heating on the effectiveness of the active damping of resonant vibration is studied  相似文献   

11.
The paper addresses the active damping of the resonant flexural vibration of a hinged viscoelastic rectangular plate with distributed piezoelectric actuators. The thermomechanical behavior of passive and active materials is described using the concept of complex characteristics. The interaction of the mechanical and temperature fields is taken into account. To solve the problem, the variational and Bubnov–Galerkin methods are used. The effect of the temperature of dissipative heating on the effectiveness of the active damping of resonant vibration is studied  相似文献   

12.
The basic equations for viscoelastic laminated shells with distributed piezoelectric sensors and actuators are presented. Physical and geometrical nonlinearities are taken into account. It is shown that the asymptotic methods of nonlinear mechanics can be used in combination with the Bubnov–Galerkin method to solve nonlinear boundary value problems.  相似文献   

13.
A new approach is followed to study the effect of mixed mechanical boundary conditions on the effectiveness of active damping of the forced resonant vibrations of thermoviscoelastic orthotropic plates. The problem is solved by the Bubnov–Galerkin method. Formulas for the voltage that should be applied to the actuator to damp the first vibration mode are derived. It is shown that the mechanical boundary conditions, the dissipative properties of the material, and the dimenstions of the sensors and actuators have a strong effect on the effectiveness of active damping of the vibrations of plates  相似文献   

14.
The effects of a piezoelectric layer on the stability of viscoelastic plates subjected to the follower forces are evaluated. The differential equation of motion of the viscoelastic plate with the piezoelectric layer is formulated using the two-dimensional viscoelastic differential constitutive relation and the thin plate theory. The weak integral form of the differential equations and the force boundary conditions are obtained. Using the element-free Galerkin method, the governing equation of the viscoelastic rectangular plate with elastic dilatation and Kelvin–Voigt distortion is derived, subjected to the follower forces coupled with the piezoelectric effect. A generalized complex eigenvalue problem is solved, and the force excited by the piezoelectric layer due to external voltage is modeled as the follower tensile force; this force is used to improve the stability of the non-conservative viscoelastic plate. For the viscoelastic plate with various boundary conditions, the results for the instability type and the critical loads are presented to show the variations in these factors with respect to the location of the piezoelectric layers and the applied voltages. The stability of the viscoelastic plates can be effectively improved by the determination of the optimal location for the piezoelectric layers and the most favorable voltage assignment.  相似文献   

15.
The creep buckling and post-buckling of the laminated piezoelectric viscoelastic functionally graded material (FGM) plates are studied in this research. Considering the transverse shear deformation and geometric nonlinearity, the Von Karman geometric relation of the laminated piezoelectric viscoelastic FGM plates with initial deflection is established. And then nonlinear creep governing equations of the laminated piezoelectric viscoelastic FGM plates subjected to an in-plane compressive load are derived on the basis of the elastic piezoelectric theory and Boltzmann superposition principle. Applying the finite difference method and the Newmark scheme, the whole problem is solved by the iterative method. In numerical examples, the effects of geometric nonlinearity, transverse shear deformation, the applied electric load, the volume fraction and the geometric parameters on the creep buckling and post-buckling of laminated piezoelectric viscoelastic FGM plates with initial deflection are investigated.  相似文献   

16.
The basic equations for thin-walled thermoviscoelastic plates with distributed piezoelectric actuators under monoharmonic mechanical and electric loads are derived. The thermomechanical behavior of materials is described using the concept of complex characteristics. Variational methods of solving nonlinear problems of active damping of the bending vibrations of plates are considered. The effect of dissipative heating on the damping of the axisymmetric bending vibrations of a circular plate is examined as an example Translated from Prikladnaya Mekhanika, Vol. 45, No. 2, pp. 107–123, February 2009.  相似文献   

17.
The paper examines the effect of dissipative heating on the performance of a sensor in a viscoelastic rectangular plate undergoing resonant vibrations. The thermoviscoelastic behavior of materials is described using the concept of complex characteristics. The coupling of the electromechanical and thermal fields is taken into account. The nonlinear problem is solved by the Bubnov–Galerkin method. The effect of the mechanical boundary conditions and dissipative-heating temperature on the performance of the sensors is analyzed  相似文献   

18.
The problem of induced resonance vibrations and dissipation heating in a rectangular bimorphous plate made of a dissipative piezoelectric material under a harmonic potential difference is tackled. The edges of the plate are considered to be hinged and ideally thermally insulated. The dissipation properties of the material are taken into account on the basis of the concept of complex characteristics, which are assumed to be temperature-independent. An exact solution is found for the problem. The critical value of the load parameter is determined when the maximum temperature reaches the Curie point. A finite-element method has been developed for investigating the dynamic behavior and temperature of vibrational heating that bimorphous plates made of a viscoelastic material undergo under a harmonic load. The results obtained for the electromechanical vibrations of plates by finite-element calculations and by an analytical solution are compared. Translated from Prikladnaya Mekhanika, Vol. 35, No. 9, pp. 85–93, September, 1999.  相似文献   

19.
Tylikowski  A. 《Meccanica》2003,38(6):659-668
The purpose of the present paper is to solve an active control problem of nonlinear continuous system parametric vibrations excited by the fluctuating force. The problem is solved using the concept of distributed piezoelectric sensors and actuators with a sufficiently large value of velocity feedback. The direct Liapunov method is proposed to establish criteria for the almost sure stochastic stability of the unperturbed (trivial) solution of the shell with closed-loop control. The distributed control is realized by the piezoelectric sensor and actuator, with the changing widths, glued to the upper and lower shell surface. The relation between the stabilization of nonlinear problem and a linearized one is examined. The fluctuating axial force is modeled by the physically realizable ergodic process. The rate velocity feedback is applied to stabilize the shell parametric vibrations.  相似文献   

20.
Vibrations and the damping behaviour of thin constrained composite plates with double piezoelectric layers are analytically explored by using Fourier transformation and classical laminated plate theory. Electric potential equations in the double piezoelectric layers are solved with respect to closed and open circuit boundary conditions, an exterior dielectric slab and active control. The natural frequencies and loss factors of the constrained smart composite plates with passive control methods are not notably changed in comparison with those of the constrained composite plates without piezoelectric effects since vibrational energy does not efficiently convert to electrical energy. The loss factors of the composite plates with active constrained damping increase and the natural frequencies have significant variations as the proportional derivative gains increase. Transverse displacement power spectra of the piezoelectric composite plates with active control are compared with those of the piezoelectric composite plates with passive control showing that active control has the best suppression performance of vibrations for the constrained laminated plates with double piezoelectric layers. Radial power spectral density, phase angles and cylindrical-wave power spectral density are calculated. Interesting patterns of wave propagation are explained when plane wave expansion is used to obtain Bessel cylindrical waves.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号