首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
D. Zhou  O. G. McGee III 《Meccanica》2013,48(4):993-1016
Three-dimensional (3-D) free vibration of an elastic prism with skew cross-section is investigated using an elasticity-based variational Ritz procedure. Specifically, the associated energy functional minimized in the Ritz procedure is formulated using a simple coordinate mapping to transform the solid skew elastic prism into a unit cube computational domain. The displacements of the prism in each direction are approximately expressed in the form of variable separation. As an enhancement to conventional use of algebraic polynomials trial series in related solid body vibration studies in the associated literature, the assumed skew prism displacement, u, v and w in the computational ξηζ skew coordinate directions, respectively, are approximated by a set of generalized coefficients multiplied by a finite triplicate Chebyshev polynomial series and boundary functions in ξηζ to ensure the satisfaction of the geometric boundary conditions of the prism. Upon invoking the stationary condition of the Lagrangian energy functional for the skew elastic prism with respect to the assumed generalized coefficients, the usual characteristic frequency equations of natural vibrations of the skew elastic prism are derived. Upper bound convergence of the first eight non-dimensional frequencies accurate to four significant figures is achieved by using up to 10–15 terms of the assumed skew prism displacement functions. First known 3-D vibration characteristics of skew elastic prisms are examined showing the effects of varying prism length ratios (ranging from skew solids to skew slender beams), as well as, varying cross-sectional side ratios and skewness, which collectively can serve as benchmark studies against which vibration modes predicted by classical Euler and shear deformable skew beam theories as well as alternative methodologies used in elastic prism vibrations of mechanical and structural components.  相似文献   

2.
An experimental study of supersonic flow over two-dimensional surface-mounted prisms is carried out in a Mach 3 low-noise wind tunnel. The noise level of this supersonic wind tunnel, defined as the root mean-square Pitot pressure fluctuation normalized by the mean Pitot pressure, can be reduced to about 0.37%. The nanotracer planar laser scattering (NPLS) technique is used to analyze the influence of the prism geometry and the oncoming flow conditions on the typical flow structures including separation and reattachment shocks. With increase in the prism height the induced shocks move upstream. At a constant streamwise length L of a prism the timeaveraged NPLS images show that the length of the downstream recirculation region increases from 0.8L to 1.2L, when the prism height H changes from 3 to 5 mm. As compared with the flow structures occurring downstream of the prisms, the upstream flow structures are more susceptible to the oncoming boundary layer and are considerably different in laminar and turbulent flows. The separation shock wave is clearly visible in turbulent flow even for the 1-mm prism, whereas in the case of laminar flow there is no a distinct shock wave upstream of this prism. At the same time, the location of the flow reattachment and the angle of the reattachment shock wave in the downstream flow remain almost the same in both two flow regimes.  相似文献   

3.
本文应用三维有限元理论,构造了一类五面体6~15节点等参单元的形函数,提出了在五面体单元内的Gauss积分处理方法,建立了相应的单元刚度矩阵。这类单元的节点可以在6~15之间任意选择。将其与SAP5中的六面体8~21节点等参单元匹配,计算了对接板接头的理论应力集中系数。经与有关文献结果比较表明:这类单元适合于计算焊接结构的应力场,并且具有良好的精度。  相似文献   

4.
The free vibration of annular thick plates with linearly varying thickness along the radial direction is studied, based on the linear, small strain, three-dimensional (3-D) elasticity theory. Various boundary conditions, symmetrically and asymmetrically linear variations of upper and lower surfaces are considered in the analysis. The well-known Ritz method is used to derive the eigen-value equation. The trigonometric functions in the circumferential direction, the Chebyshev polynomials in the thickness direction, and the Chebyshev polynomials multiplied by the boundary functions in the radial direction are chosen as the trial functions. The present analysis includes full vibration modes, e.g., flexural, thickness-shear, extensive, and torsional. The first eight frequency parameters accurate to at least four significant figures for five vibration categories are obtained. Comparisons of present results for plates having symmetrically linearly varying thickness are made with others based on 2-D classical thin plate theory, 2-D moderate thickness plate theory, and 3-D elasticity theory. The first 35 natural frequencies for plates with asymmetrically linearly varying thickness are compared to the finite element solutions; excellent agreement has been achieved. The asymmetry effect of upper and lower surface variations on the frequency parameters of annular plates is discussed in detail. The first four modes of axisymmetric vibration for completely free circular plates with symmetrically and asymmetrically linearly varying thickness are plotted. The present results for 3-D vibration of annular plates with linearly varying thickness can be taken as benchmark data for validating results from various plate theories and numerical methods.  相似文献   

5.
Galloping is characterized by large and periodical oscillations which may lead to collapse of slender structures. This study is the first attempt of a comprehensive experimental and theoretical investigation of galloping of transversely inclined prisms. A modified quasi-steady model is proposed with a constant term to estimate the galloping of a transversely inclined prism, which is later experimentally investigated by conducting a static Synchronous Multi-Pressure Sensing System (SMPSS) test and an aeroelastic test in a boundary layer wind tunnel. The galloping responses of the prisms were measured in the aeroelastic test, while the aerodynamic force coefficients were determined from the SMPSS test. These experimental results were subsequently utilized to validate the quasi-steady model. Based on the proposed model, the galloping responses of the prisms were predicted and compared with the experimental results. The experimentally measured and theoretically predicted galloping responses are discussed with respect to aerodynamic damping ratios, onset galloping wind speeds, distributed pressure coefficients, point pressure spectra and vortex shedding frequencies. Interesting findings are summarized.  相似文献   

6.
The hydrodynamic problem of a cone entering the water surface obliquely has been analyzed by the three-dimensional (3-D) incompressible velocity potential theory with the fully nonlinear boundary conditions on the moving free surface and body surface boundary. The time stepping method is used in the stretched coordinate system defined as the ratio of the physical system to the distance that the cone has travelled into water. The boundary element method is used to solve the potential at each time step. Both triangular element mesh and quadrilateral element mesh have been used. Discretisation of the body surface and the free surface is applied regularly during the simulation to account for their change and deformation, and data from the old mesh is transferred into the new one through interpolation. Both the dynamic and kinematic free surface boundary conditions are satisfied through the Eulerian form. In particular the free surface elevation and potential variation are traced at a given azimuth of the cylindrical coordinate system, in the direction parallel to the body surface or perpendicular to the free surface to avoid multi-valued function. Detailed convergence study with respect to time step and element size has been undertaken and high accuracy has been achieved. Results for the cone in vertical entry are compared with those obtained from the 2-D axisymmetric method and good agreement is found. Simulations are made for cones of various deadrise angles and different oblique entries and detailed results are provided.  相似文献   

7.
The effect of a wake-mounted splitter plate on the flow around a surface-mounted finite-height square prism was investigated experimentally in a low-speed wind tunnel. Measurements of the mean drag force and vortex shedding frequency were made at Re=7.4×104 for square prisms of aspect ratios AR=9, 7, 5 and 3. Measurements of the mean wake velocity field were made with a seven-hole pressure probe at Re=3.7×104 for square prisms of AR=9 and 5. The relative thickness of the boundary layer on the ground plane was δ/D=1.5–1.6 (where D is the side length of the prism). The splitter plates were mounted vertically from the ground plane on the wake centreline, with a negligible gap between the leading edge of the plate and rear of the prism. The splitter plate heights were always the same as the heights of prisms, while the splitter plate lengths ranged from L/D=1 to 7. Compared to previously published results for an “infinite” square prism, a splitter plate is less effective at drag reduction, but more effective at vortex shedding suppression, when used with a finite-height square prism. Significant reduction in drag was realized only for short prisms (of AR≤5) when long splitter plates (of L/D≥5) were used. In contrast, a splitter plate of length L/D=3 was sufficient to suppress vortex shedding for all aspect ratios tested. Compared to previous results for finite-height circular cylinders, finite-height square prisms typically need longer splitter plates for vortex shedding suppression. The effect of the splitter plate on the mean wake was to narrow the wake width close to the ground plane, stretch and weaken the streamwise vortex structures, and increase the lateral entrainment of ambient fluid towards the wake centreline. The splitter plate has little effect on the mean downwash. Long splitter plates resulted in the formation of additional streamwise vortex structures in the upper part of the wake.  相似文献   

8.
The flow around surface-mounted, finite-height square prisms at a Reynolds number of Re = 4.2 × 104 was investigated experimentally in a low-speed wind tunnel using particle image velocimetry. The thickness of the boundary layer on the ground plane relative to the width of the prism was δ/D = 1.5. Four prism aspect ratios were tested, AR = 9, 7, 5, and 3, to study how the aspect ratio influences the flow field close to the prism. Upstream of the prism, lowering the aspect ratio from AR = 9 to AR = 3 causes the stagnation point on the upstream face to move closer to the free end, but there is no influence on the location and strength of the horseshoe vortex. Lowering the aspect ratio from AR = 9 to AR = 3 causes the cross-stream vortices in the upper and lower halves of the wake to move downstream and upstream, respectively; the latter vortex is absent for AR = 3, suggesting this prism sits below the critical aspect ratio. Above the free end of the prism, within the region of separated flow, lowering the aspect ratio from AR = 9 to AR = 3 shifts the location of the cross-stream vortex farther downstream. For the prism of AR = 3, reverse flow above the free end is stronger yet more unsteady compared to the more slender prisms, while the streamwise edge vortices are smaller and weaker.  相似文献   

9.
力学和几何学是密不可分的,本文给出了一种几何作图法进行端面平行时张拉整体三棱柱的找形方法和作图确定自平衡内力大小的找力方法,并推导出找形后张拉整体三棱柱自平衡内力的力密度计算公式,通过算例验证了几何作图法找形与找力的正确性。几何作图法找形和找力方法操作简单,直观可控,可以在CAD软件中实现,甚至可以纸上手绘实现;自平衡力密度公式简单,表达直观,是力密度法的一种几何实现。  相似文献   

10.
对于较厚的多层复合壳体,其振动位移沿厚度方向呈锯齿形变化且层间剪切和拉、压应力呈三维耦合状态,采用传统的等效单层理论分析已不能满足精度要求. 建立不受结构厚度、铺层材料性质和铺层方式限制的三维分析方法具有重要的研究价值. 本文以独立铺层为建模对象,结合广义谱方法与微分求积技术建立了一种适用一般边界条件和铺层方式的多层复合壳体三维分析新方法——谱--微分求积混合法. 该方法应用三维弹性理论对独立铺层进行精确建模,有效克服了二维简化理论对横向变形以及层间应力估计不确切的缺点;引入微分求积技术对铺层进行数值离散,将三维偏微分问题转化为二维偏微分问题,降低了求解维度和难度;应用广义谱方法近似地表述离散计算面上的场变量,将获取的二维偏微分方程转化为以场变量谱展开系数为未知量的线性代数方程组,避免了对超越方程的求解. 数值验证结果表明该方法收敛性好,计算精度高.   相似文献   

11.
粗糙表面分维计算的立方体覆盖法   总被引:16,自引:0,他引:16  
针对三角形棱柱表面积法和投影覆盖法在计算粗糙表面分形维数中存在的问题,提出了计算粗糙表面分维的立方体覆盖法,对计算结果进行了对比分析,并进一步对表面分维计算中的有关理论问题进行了分析,发现立方体覆盖法作为一种几何意义上的覆盖法,并计算结果比三角形棱柱表面积法和投影覆盖法更接近实际。  相似文献   

12.
We study experimentally and theoretically the planar dynamics of purely rolling prisms on a rough ramp, where the rolling motion is interrupted intermittently by edge impacts. The experiments were carried out for prisms made of different materials and having different geometries. We found that the angular velocities of the rolling prisms are material-independent, but they change significantly with their geometry. We modelled the dynamics of edge impacts by considering a socalled detachment front propagating across the contact interface. The detachment front represents the moving boundary between a detached region and a stress region that coexist within the interface plane. The theoretical analysis indicates that the detachment front can be characterized by a scale number, whose value converges to 0.4050 for prisms having large number of edges. A new jump rule for edge impacts is then developed, by which we can accurately reproduce the experimental observations, and explain why the motion of the prism is material-independent.  相似文献   

13.
The 3-D boundary integral equation is derived in terms of the reciprocal work theorem and used along with the 2.5-D Green’s function developed in Part I [Lu, J.F., Jeng, D.S., Williams, S., submitted for publication. A 2.5-D dynamic model for a saturated porous medium: Part I. Green’s function. Int. J. Solids Struct.] to develop the 2.5-D boundary integral equation for a saturated porous medium. The 2.5-D boundary integral equations for the wave scattering problem and the moving load problem are established. The Cauchy type singularity of the 2.5-D boundary integral equation is eliminated through introduction of an auxiliary problem and the treatment of the weakly singular kernel is also addressed. Discretisation of the 2.5-D boundary integral equation is achieved using boundary iso-parametric elements. The discrete wavenumber domain solution is obtained via the 2.5-D boundary element method, and the space domain solution is recovered using the inverse Fourier transform. To validate the new methodology, numerical results of this paper are compared with those obtained using an analytical approach; also, some numerical results and corresponding analysis are presented.  相似文献   

14.
We present a solver for a three‐dimensional Poisson equation issued from the Navier–Stokes equations applied to model rivers, estuaries, and coastal flows. The three‐dimensional physical domain is composed of an arbitrary domain in the horizontal direction and is bounded by an irregular free surface and bottom in the vertical direction. The equations are transformed vertically to the σ‐coordinate system to obtain an accurate representation of top and bottom topographies. The method is based on a second‐order finite volume technique on prisms consisting of triangular grids in the horizontal direction. The algorithm is accompanied by an analysis of different linear system solvers in order to achieve fast solutions. Numerical experiments are conducted to test the numerical accuracy and the computational efficiency of the proposed method. Copyright © 2014 John Wiley & Sons, Ltd.  相似文献   

15.
本文在文[1]的基础上,采用子结构法建立了多层复合板的边界元方法,对具有中心园孔[0°/90°]_s的层合板的层间应力作了计算,同有限元法的结果进行了比较,结果表明,应用边界元法处理这类问题,单元划分少,节约了计算机时,而且有较高的计算精度。  相似文献   

16.
提出了一种改进的区域分解法,用于三维表面三角形和四边形网格的自动生成。基于区域分解法的三维表面网格生成的主要技术包括三维表面三角形面片拓扑关系的建立,表面三角形面片的分组及特征面的确定,空间曲线上网格节点的生成,区域内外边界的合并,最佳剖分面的确定,以及网格的光滑处理等。本文对这些技术进行了详细的介绍。本文提出的表面网格生成方法具有算法可靠、生成网格效率高以及生成网格质量高等优点。最后给出三维表面网格生成实例验证了本文提出方法的可靠性。  相似文献   

17.
Two related topics are addressed in this article. The first part of the article proves that, for a certain admissible class of problems in linear elasticity, the hypersingular boundary contour method (HBCM) can be collocated at all boundary points on the surface of a three-dimensional (3-D) body, including those on boundary contours, edges and corners, because the HBCM-shape-functions satisfy, a priori, all the smoothness requirements for collocation at these points. In contrast, the hypersingular boundary element method needs, in general, relaxation of some of these smoothness requirements for its shape functions, even for collocation at regular points that lie on the boundaries of boundary elements.A hypersingular residual, obtained from the standard and hypersingular boundary integral equations (HBIEs), has been recently proposed as a local error estimator for a boundary element, for the boundary integral equation. The second part in the present article is concerned with a definition of an analogous local error estimator for the boundary contour method, for 3-D linear elasticity. This error estimator is then used to drive an h-adaptive meshing procedure. Numerical results are presented to demonstrate adaptive meshing for selected example problems.  相似文献   

18.
振动台模型试验中地基土域的数值模拟   总被引:5,自引:0,他引:5  
针对土-结构动力相互作用振动台模型试验中有限地基土域的模拟问题,本文分别采用有限元法和边界元法对地基土模型的侧向人工边界和底部人工边界的合理位置问题进行了计算分析。文中首先采用三维有限元方法,探讨了地基土侧向垂直人工边界不同位置对群桩基础和箱形基础地震反应的影响,提出了侧向人工边界合理位置的具体建议;然后利用层土动力Green函数建立边界元模型,通过对埋入式条形基础的动力反应分析,探讨了底部水平人工边界的合理位置,提出了相应的建议。  相似文献   

19.
马文涛 《力学学报》2018,50(5):1115-1124
计算效率低的问题长期阻碍着无网格伽辽金法(element-free Galerkin method, EFGM) 的深入发展. 为了提高EFGM 的计算速度, 本文提出一种求解二维弹性力学问题的光滑无网格伽辽金法. 该方法在问题域内采用滑动最小二乘法(moving least square, MLS)近似、在域边界上采用线性插值建立位移场函数; 基于广义梯度光滑算子得到两层嵌套光滑三角形背景网格上的光滑应变, 根据广义光滑伽辽金弱形式建立系统离散方程. 两层嵌套光滑三角形网格是由三角形背景网格本身以及四个等面积三角形子网格组成. 为了提高方法的精度, 由Richardson外推法确定两层光滑网格上的最优光滑应变. 几个数值算例验证了该方法的精度和计算效率. 数值结果表明, 随着光滑积分网格数目的增加, 光滑无网格伽辽金法的计算精度逐步接近EFGM 的, 但计算效率要远远高于EFGM的. 另外, 光滑无网格伽辽金法的边界条件可以像有限元那样直接施加. 从计算精度和效率综合考虑, 光滑无网格伽辽金法比EFGM具有更好的数值表现, 具有十分广阔的发展空间.   相似文献   

20.
As a first endeavor, the three-dimensional free vibration and vibrational displacements characteristics of two-dimensional functionally graded fiber-reinforced (2-D FGFR) curved panels with different boundary conditions are presented. This paper presents a novel 2-D six-parameter power-law distribution for fiber volume fractions of 2-D FGFR that gives designers a powerful tool for design flexible of structures under multi-functional requirements. Various material profiles in two radial and axial directions can be illustrated using the six-parameter power-law distribution. The study is carried out based on the three-dimensional, linear and small strain elasticity theory. In this work, orthotropic panel is assumed to be simply supported at one pair of opposite edges and arbitrary boundary conditions at the other edges such that trigonometric functions expansion can be used to satisfy the boundary conditions precisely at simply supported edges. The 2-D generalized differential quadrature method (GDQM) as an efficient and accurate numerical tool is used to discretize the governing equations and to implement the boundary conditions. The convergence of the method is demonstrated and to validate the results, comparisons are made with the available solutions for FGM curved panels. Results indicate by using the 2-D six-parameter power-law distribution, it is possible to study the influence of different kinds of two-directional material profiles including symmetric and classic on the natural frequencies and modal displacements of a 2-D FGFR panel. Furthermore, maximum amplitude and uniformity of modal displacements distributions can be modified to a required manner by selecting suitable different parameters of 2-D power-law distribution and several various volume fractions profiles in two directions.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号