首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Reaction of optically active ketone complexes (+)-(R)-[(η5-C5H5)Re(NO)-(PPh3)(η1-O=C(R)(CH3)]+ BF4 (R = CH2CH3, CH(CH3)2m C(CH3)3, C6H5) with K(s-C4H9)3BH gives alkoxide complexes (+)-(RS)-(η5-C5H5)Re(NO)(PPh3)-(OCH(R)CH3) (73–90%) in 80–98% de. The alkoxide ligand is then converted to Mosher esters (93–99%) of 79–98% de.  相似文献   

2.
139La-NMR chemical shifts were measured for several anionic complexes of formulae Li(C4H8O2)3/2 [La(ν3-C3H5)4], [Li(C4H8O2)2][Cp′nLa(ν3-C3]H5)4−n] (Cp′ = Cp(ν5-C5H5); n = 1, 2 and Cp′ = Cp * (ν5-C5Me5); N = 1) and Li[RnLa(ν3-C3H4)4n] (R = N(SiMe3)2; n = 1, 2 and R = CCsIMe3; n = 4), as well as for neutral compounds for formulae La(ν3-C3H5)3Ln (L = (C4H8O2)1.5, (HMPT)2, TMED), Cp′nLa(ν3-C3H5)3−n (Cp′= Cp(ν5-Cp5H5), Cp *(ν5-C5Me5); n = 1, 2) and La(ν3-C3H2)2X(THF)2 X = Cl, Br, I). Typical ranges of the 139La-NMR chemical shifts were found for the different types of complex independent of number and kind of organyl groups directly bonded to lanthanum.

Zusammenfassung

139La-NMR-Spektroskopie wurde an einer Reihe anionischer Allyllanthanat(III)-Komplexe der Zusammensetzung ]- [La)ν3-C3H5)4, [Li(C4H8)2][Cp′nLa(ν3-C3H5)4−n(Cp′ = Cp(ν5-C5H5); n = 1, 2 und Cp′ = Cp * (ν5-C5Me5); N = 1) und Li[RnLa(ν3-C3H5)4−n (R = B(SiMe3)2; n = 1, 2 und R = CCSiMe3; n = 4 sowie neutraler Allyllanthan(III)-Komplexe der Zusammensetzung La(ν3-C3H5)3Ln (Ln = (C4H8O2)1.5, (HMPT)2, TMED), Cp′n, La(ν3-C3H5)3−n (Cp′ = Cp(ν5-C5H5), Cp * (ν5- Cp5Me5); n = 1, 2) und La(ν3-Cp3H5)2X(THF)2 (X = Cl, Br, I) durchgefürt. In Abhängikeit von der Anzahl und der Art der am Lanthan gebundenen Gruppen wurden für die verschieden Komplextypen charakteristische Resonanzbereiche ermittelt.  相似文献   


3.
The reaction of [R-(R,R)]-(+)589-[(η5-C5H5){1,2-C6H4(PMePh)2}Fe(NCMe)]PF6 with (±)-AsHMePh in boiling methanol yields crystalline [R-[(R)-(R,R)]-(+)589)-[(η5-C5H5){1,2-C6H4(PMePh)2}Fe(AsHMePH)PF6, optically pure, in ca. 90% yield, in a typical second-order asymmetric transformation. This complex contains the first resolved secondary arsine. Deprotonation of the secondary arsine complex with KOBut at −65°C gives the diastereomerically pure tertiary arsenido-iron complex [R-[(R),(R,R)]]-[((η5-C5H5){1,2-C6H4(PMePh)2}FeAsMePh] · thf, from which optically pure [R-[(S),(R,R)]]-(+)589-[(η5-C5H5){1,2-C6H4(PMePh)2}Fe(AsEtMePh)PF6 is obtained by reaction with iodoethane. Cyanide displaces (R)-(−)589-ethylmethylphenylarsine from the iron complex, thereby effecting the asymmetric synthesis of a tertiary arsine, chiral at arsenic, from (±)-methylphenylarsine and an optically active transition metal auxiliary.  相似文献   

4.
Four novel tetranuclear macrocyclic complexes of the formula [(CuLi)3Fe](ClO4)3·3H2O (i=1–4, Li are the dianions of the [14]N4 and [15]N4 macrocyclic oxamides, namely 2,3-dioxo-5,6:13,14-dibenzo-7,12-bis(ethoxycarbonyl)-1,4,8,11-tetraazacyclotetradeca-7,11-diene, 2,3-dioxo-5,6:13,14-dibenzo-9-methyl-7,12-bis(ethoxycarbonyl)-1,4,8,11-tetraazacyclotetradeca-7,11-diene and 2,3-dioxo-5,6:14,15-dibenzo-7,13-bis(ethoxycarbonyl)-1,4,8,12-tetraazacyclotetradeca-7,12-diene] have been prepared and characterized. These complexes are the first examples of oxamido-bridged Cu(II)–Fe(III) heterometallic species. Cryomagnetic studies on [(CuL1)3Fe](ClO4)3·3H2O (1) and [(CuL3)3Fe](ClO4)3·3H2O (3) (77–300 K) revealed that the Cu(II) and Fe(III) ions interact antiferromagnetically through the oxamido bridge, with the exchange integral J=−30.8 cm−1 for 1 and J=−28.7 cm−1 for 3 based on . The interaction parameters have been compared with that of the related [Cu3Mn] compound.  相似文献   

5.
The stoichiometry of thermal decomposition has been studied for (I): [Ni(4-EtPy)4(NCS)2] as a host complex as well as for its clathrates [Ni(4-EtPy)4(NCS)2G where guest molecule G - toluene, (II): T, (III): o-xylene (o-X) and (IV): p-xylene (p-X). The loss of volatile components proceeds in three steps (−2L, −1L, −1L) for I and in four steps (−G, −2L, −1L, −1L) for II, III and IV. DSC and X-ray powder measurements indicated a phase transition in all compounds under study. However, this process is overlapped by the escape of G in II and III. The differences in enthalpy changes are associated with different guest-host interactions in the particular clathrates.  相似文献   

6.
The structures of two glycinohydroxamoto (GHA) complexes of Ni(II) and Co(III) have been determined by single-crystal X-ray diffraction methods. The crystals of Ni(GHA)2 are monoclinic with a = 5.360(1), b = 7.315(4), c = 10.194(4) Å, β = 96.57(3), Z = 2, and space group P21/c. The crystals of Co(GHA)3•1/2 H2O are monoclinic with a = 22.467(19), b = 8.041(4), c = 13.700(11) Å, β = 116.01(7), Z = 8, and space group C2/c. The values of the final residuals R for Ni(GHA)2 and Co(GHA)3•1/2 H2O are 0.0275 and 0.032, respectvely. The molecular structures of Ni(GHA)2 and Co(GHA)3 consist of a square planar and an octahedral coordination, respectively, with the glycinohydroxamato (NH2CH2CONOH) ligands coordinating to the metal ion via the N (amino) and the N (NOH). These two complexes are the first well-established cases of coordination of the NHO group of a hydroxamic acid to a transition metal via the nitrogen atom.  相似文献   

7.
The coordinatively unsaturated uranium(IV) complex U[N(C6H5)2]4 has been prepared via the stoichiometric reaction of diphenylamine with [(Me3Si)2N]2 H2. U[N(C6H5)2]4 coordinates Lewis bases such as Et2O, THF, pyridine or (EtO)3PO, based on electronic absorption spectroscopy and 1H NMR studies. Exchange between U[N(C6H5)2]4 and U[N(C6H5)2]4(L), where L is THF or pyridine, is rapid on the NMR time-scale between 307 and 323 K. Measurement of equilibrium constants for L = THF provides ΔH and ΔS values of −60 kJ mol−1 and −1.8 × 102 J K−1 mol−1, respectively. U[N(C6H5)2]4 coordinates and binds (EtO)3PO much more tightly (Keq = & > 104 M−1) than THF or pyridine with the exchange rate between U[N(C6H5)2]4 and U[N(C6H5)2]4[OP(OEt)3] being close to the NMR time-scale.  相似文献   

8.
Reaction of the optically active primary amine (S)-(—)--methylbenzylamine with trimethylaluminium in heptane affords the crystalline organoaluminium dimer (S)-(—)-(S)-(—)-[(C6H5)CH(CH3)NHA1(CH3)2]2. Isolated as large, colourless, extremely air-sensitive prismatic crystals, the title compound crystallizes in the orthorhombic space group P212121 with unit cell parameters a = 8.406(3), b = 15.505(4), c = 17.547(5) Å, V = 2287 Å3 and p = 1.03 g cm−3 for Z = 4. Least-squares refinement based on 1477 observed reflections converged at R = 0.056, Rw = 0.058. Methane was eliminated during the course of the reaction due to cleavage of A1---C and N---H bonds resulting in an asymmetric A12N2 fragment at the core of the organoaluminium dimer. The mean A1---C bond distance in the dimethylaluminium units is 1.930(8), while the mean A1---N bond distance is 1.950(5) Å. Specific rotation ([]D25 in CH2C12)of the dimer is determined to be - 20.6°.  相似文献   

9.
The Lewis acid-catalyzed atom transfer radical cyclization reactions of olefinic -bromo β-keto amides were investigated. It was found Lewis acid Yb(OTf)3 or Mg(ClO4)2 not only promoted the cyclization reactions, but also resulted in excellent trans stereocontrol in the cyclization products. With the catalysis of Lewis acid Yb(OTf)3 or Mg(ClO4)2 at −78°C in the presence of Et3B/O2, the cyclization reactions of C-olefinic β-keto amides provided cyclic ketones, while the cyclization reactions of N-olefinic β-keto amides led to the formation of γ-lactams, which could be converted to 3-aza-bicyclo[3,1,0]hexan-2-ones.  相似文献   

10.
Carnosine (β-alanyl-L-histidine) is a biologically active molecule involved in muscular metabolism. It crystallises in the C; space group with a = 24.725 Å b = 5,427 Å c = 8,004 Å β = 100,2° (Z = 4)

In the crystal, acid and basic groups are engaged in hydrogen bonds whose strength is evaluated through IR frequencies. Molecular conformation in the solid state is defined by τ1 = /t-177° τ2 = −38° φ = −96° ψ = +131° χ1 = 181° χ21 = 62°

NMR study of carnosine in aqueous solution indicates that rotation about CH2-CH2 is free and that the other angles take the following values: Ø −150° or −90° and X1 = 165° or 315°. Infrared and Raman spectra suggest that τ2 undergoes small changes when going from crystal to solution while ψ is close to +150°.  相似文献   


11.
Polarized absorption spectra of Ba(MnO4)2·3H2O/Ba(ClO4)2·3H2O mixed single crystals are reported at 4.2°K. Previous 1T21A1 assignments for the 5200 Å and 3000 Å absorption bands of MnO4 are substantiated; further support is provided for the 1T11A1 assignment of the 3600 Å absorption band of MnO4. The site-splitting of the 5200 Å 1T2 state is E(1E)−E(1A) ≈ −150 cm−1; that of the 3000 Å 1T2 state is E(1E)−E(1A) ≈ 300 cm−1. A significant e vibronic intensity component is observed in the 5200 Å 1T2 state.  相似文献   

12.
Nest-shaped cluster [MoOICu3S3(2,2′-bipy)2] (1) was synthesized by the treatment of (NH4)2MoS4, CuI, (n-Bu)4NI, and 2,2′-bipyridine (2,2′-bipy) through a solid-state reaction. It crystallizes in monoclinic space group P21/n, a=9.591(2) Å, b=14.820(3) Å, c=17.951(4) Å, β=91.98(2)°, V=2549.9(10) Å3, and Z=4. The nest-shaped cluster was obtained for the first time with a neutral skeleton containing 2,2′-bipy ligand. The non-linear optical (NLO) property of [MoOICu3S3(2,2′-bipy)2] in DMF solution was measured by using a Z-scan technique with 15 ns and 532 nm laser pulses. The cluster has large third-order NLO absorption and the third-order NLO refraction, its 2 and n2 values were calculated as 6.2×10−10 and −3.8×10−17 m2 W−1 in a 3.7×10−4 M DMF solution.  相似文献   

13.
Irradiation of the 30-electron Mo25-C5Me5)2(CO)4 and Re2(CO)10 in toluene solution (containing H2O) afforded (in 1–2% yields) a novel triangular metal cluster, (η5-C5Me5)3Mo3(CO)42-H)(η3-O) (1), which was characterized by a single-crystal X-ray diffraction study. Compound 1, of pseudo Cs-m symmetry, has a triangulo-Mo33-O) core with composite Mo---H---Mo and Mo---Mo electron-pair bonds along one unusually short edge (2.660(1) Å) and Mo--- electron-pair bonds along the other two edges (2.916(1) and 2.917(1) Å). The edge-bridged hydride ligand, which displays a characteristic high-field proton NMR resonance at δ −17.79 ppm, was not found from the crystallographic determination but was located via a quantitative potential-energy-minimization method. This procedure unambiguously established that the optimized hydrogen position, which corresponds to a distinct coordination site with identical Mo---H distances of 1.85 Å, is the only one that can be sterically occupied by a metal-bound hydride ligand. This 46-electron species is the first electron-deficient trimolybdenum cluster containing a monoprotonated Mo---Mo double bond; its existence is attributed to ligand overcrowding due to the bulky pentamethylcyclopentadienyl rings. Black (η5- C5Me5)3Mo3(CO)42-H)(η3-O) · 1/2THF crystallizes with two formula species in a triclinic unit cell of P1 symmetry with a 8.603(4), b 11.115(4), c 19.412(11) Å, 80.69(4)°, β 101.10(4)°, and γ 98.88(3)° at −40° C. Least-squares refinement (RAELS with 221 variables) of one independent Mo3 molecule and a centrosymmetrically-disordered THF molecule converged at R1(F) 5.62%, R2(F 6.88% for 8460 independent diffractometry data (I0 ρ 3σ(I0 collected at −40° C with Mo-K radiation  相似文献   

14.
The crystal structures of propionaldehyde complex (RS,SR)-(η5-C5H5)Re(NO)(PPh3)(η2-O=CHCH2CH3)]+ PF6 (1b+ PF6s−; monoclinic, P21/c (No. 14), a = 10.166 (1) Å, b = 18.316(1) Å, c = 14.872(2) Å, β = 100.51(1)°, Z = 4) and butyraldehyde complex (RS,SR)-[(η5-C5H5)Re(NO)(PPh3)(η2-O=CHCH2CH2CH3)]+ PF6 (1c+PF6; monoclinic, P21/a (No. 14), a = 14.851(1) Å, b = 18.623(3) Å, c = 10.026(2) Å, β = 102.95(1)°, Z = 4) have been determined at 22°C and −125°C, respectively. These exhibit C O bond lengths (1.35(1), 1.338(5) Å) that are intermediate between those of propionaldehyde (1.209(4) Å) and 1-propanol (1.41 Å). Other geometric features are analyzed. Reaction of [(η5-C5H5)Re(NO)(PPh3)(ClCH2Cl)]+ BF4 and pivalaldehyde gives [(η5-C5H5)Re(NO)(PPh3)(η2-O=CHC(CH3)3)]+BF4 (81%), the spectroscopic properties of which establish a π C O binding mode.  相似文献   

15.
The synthesis, crystal structure and magnetic measurements of three new polynuclear tetracarboxylato-bridged copper(II) complexes, i.e. {[Cu4(phen)2(μ-O2CC2H5)8] · (H2O)}n (1), [Cu2(μ-O2CC6H4OH)4(C7H7NO)2] · 6H2O (2) and [Cu2(μ-O2CCH3)4(C7H7NO)2] (3) (phen = 1,10-phenanthroline, O2CC6H4OH = 3-hydroxy benzoate, C7H7NO = 4-acetylpyridine) are reported. All compounds consist of dinuclear units, in which two Cu(II) ions are bridged by four syn,syn11:μ carboxylates, showing a paddle-wheel cage type with a square-pyramidal geometry, arranged in different ways. The structure of compound 1 consists of an one-dimensional structure generated by an alternating classical dinuclear paddle-wheel unit and an unusual dinuclear Cu2(μ-OCOC2H5)2(μ-O2CC2H5)2(phen)2unit, which are connected to each other via a syn,anti-triatomic propionato bridge in an axial-equatorial configuration. The adjacent chains are connected to generate a 2D structure through the face-to-face π–π interaction between phen rings. Structures of compounds 2 and 3 both consist of a symmetric dinuclear Cu(II) carboxylate paddle-wheel core and pyridyl nitrogen atoms of 4-acetylpyridine ligand at the apical position, and just differ in the substituents of the equatorial ligands.

The magnetic properties have been measured and correlated with the molecular structures. It is found that in the two classical paddle-wheel compounds the Cu(II) ions are strongly antiferromagnetically coupled with J = −278.5 and −287.0 cm−1 for complexes 2 and 3, respectively. In compound 1 the magnetic susceptibility could be fitted with two different, independent Cu(II) units, one strongly coupled and one weakly coupled; the paddle-wheel dinuclear unit has the strongest antiferromagetic coupling with a value for J of −299.5 cm−1, whereas the Cu(II) ions in the propionato-bridged dinuclear unit of 1 display a very weak antiferromagnetic coupling with a value for J = −0.75 cm−1, due to the orthogonality of the magnetic orbitals. Also the exchange within the chain is therefore very weak. The magneto-structural correlations for complexes 1, 2, and 3 are discussed on the basis of the structural parameters and magnetic data for the complexes.  相似文献   


16.
Two novel hydrogen maleato (HL) bridged Cu(II) complexes 1[Cu(phen)Cl(HL)2/2] 1 and 1[Cu(phen)(NO3)(HL)2/2] 2 were obtained from reactions of 1,10-phenanthroline, maleic acid with CuCl2·2H2O and Cu(NO3)2·3H2O, respectively, in CH3OH/H2O (1:1 v/v) at pH=2.0 and the crystal structures were determined by single crystal X-ray diffraction methods. Both complexes crystallize isostructurally in the monoclinic space group P21/n with cell dimensions: 1 a=8.639(2) Å, b=15.614(3) Å, c=11.326(2) Å, β=94.67(3)°, Z=4, Dcalc=1.720 g/cm3 and 2 a=8.544(1) Å, b=15.517(2) Å, c=12.160(1) Å, β=90.84(8)°, Z=4, Dcalc=1.734 g/cm3. In both complexes, the square pyramidally coordinated Cu atoms are bridged by hydrogen maleato ligands into 1D chains with the coordinating phen ligands parallel on one side. Interdigitation of the chelating phen ligands of two neighbouring chains via π–π stacking interactions forms supramolecular double chains, which are then arranged in the crystal structures according to pseudo 1D close packing patterns. Both complexes exhibit similar paramagnetic behavior obeying Curie–Weiss laws χm(T−θ)=0.414 cm3 mol−1 K with the Weiss constants θ=−1.45, −1.0 K for 1 and 2, respectively.  相似文献   

17.
Variable temperature (−55 to −150°C) studies of the infrared spectra (3500 to 400 cm−1) of dimethylmethoxyphosphine, (CH3)2POCH3 and dimethyl(methylthio)phosphine, (CH3)2PSCH3 dissolved in liquid krypton and/or xenon have been recorded. From these data, the enthalpy differences have been determined to be 393±50 cm−1 (4.71±0.60 kJ/mol), for (CH3)2POCH3 with the near-cis conformer the more stable rotamer and 80±10cm−1 (0.96±0.12 kJ/mol) for (CH3)2PSCH3 with the cis conformer the more stable form. Complete vibrational assignments are presented for both molecules, which are consistent with the predicted frequencies obtained from the ab initio MP2/6-31G(d) calculations. The optimized geometries, conformational stabilities, harmonic force fields, infrared intensities, Raman activities, and depolarization ratios have been obtained from RHF/6-31G(d) and/or MP2/6-31G(d) ab initio calculations. These quantities are compared to the corresponding experimental quantities when appropriate as well as with some corresponding results for some similar molecules.  相似文献   

18.
The methylene-bridged, mixed-chalogen compounds Fe2(CO)6(μ-SeCH2Te) (1) and Fe2(CO)6(μ-SCH2Te) (3) have been synthesised from the room temperature reaction of diazomethane with Fe2(CO)6(μ-SeTe) and Fe2(CO)6(μ-STe), respectively. Compounds 1 and 3 have been characterised by IR, 1H, 13C, 77Se and 125Te NMR spectroscopy. The structure of 1 has been elucidated by X-ray crystallography. The crystalsare monoclinic,space group P21/n, A = 6.695(2), B = 13.993(5), C = 14.007(4)Å, β = 103.03(2)°, V = 1278(7) Å3, Z = 4, Dc = 2.599 g cm−3 and R = 0.030 (Rw = 0.047).  相似文献   

19.
The reactions of RNHSi(Me)2Cl (1, R=t-Bu; 2, R=2,6-(Me2CH)2C6H3) with the carborane ligands, nido-1-Na(C4H8O)-2,3-(SiMe3)2-2,3-C2B4H5 (3) and Li[closo-1-R′-1,2-C2B10H10] (4), produced two kinds of neutral ligand precursors, nido-5-[Si(Me)2N(H)R]-2,3-(SiMe3)2-2,3-C2B4H5, (5, R=t-Bu) and closo-1-R′-2-[Si(Me)2N(H)R]-1,2-C2B10H10 (6, R=t-Bu, R′=Ph; 7, R=2,6-(Me2CH)2C6H3, R′=H), in 85, 92, and 95% yields, respectively. Treatment of closo-2-[Si(Me)2NH(2,6-(Me2CH)2C6H3)]-1,2-C2B10H11 (7) with three equivalents of freshly cut sodium metal in the presence of naphthalene produced the corresponding cage-opened sodium salt of the “carbons apart” carborane trianion, [nido-3-{Si(Me)2N(2,6-(Me2CH)2C6H3)}-1,3-C2B10H11]3− (8) in almost quantitative yield. The reaction of the trianion, 8, with anhydrous MCl4 (M=Ti and Zr) in 1:1 molar ratio in dry tetrahydrofuran (THF) at −78 °C, resulted in the formation of the corresponding half-sandwich neutral d0-metallacarborane, closo-1-M[(Cl)(THF)n]-2-[1′-η1σ-N(2,6-(Me2CH)2C6H3)(Me)2Si]-2,4-η6-C2B10H11 (M=Ti (9), n=0; M=Zr (10), n=1) in 47 and 36% yields, respectively. All compounds were characterized by elemental analysis, 1H-, 11B-, and 13C-NMR spectra and IR spectra. The carborane ligand, 7, was also characterized by single crystal X-ray diffraction. Compound 7 crystallizes in the monoclinic space group P21/c with a=8.2357(19) Å, b=28.686(7) Å, c=9.921(2) Å; β=93.482(4)°; V=2339.5(9) Å3, and Z=4. The final refinements of 7 converged at R=0.0736; wR=0.1494; GOF=1.372 for observed reflections.  相似文献   

20.
The preparation, spectroscopic characterization and magnetic study of N,N′-bis(substituted-phenyl)oxamidate-bridged nickel(II) dinuclear complexes of formula {[Ni(N3-mc)]2(μ-CONC6H4-X)}(PF6)2 (N3-mc = 2,4,4-trimethyl-1,5,9-triazacyclo-dodec-1-ene (Me3-N3-mc) or 2,4,4,9-tetramethyl-1,5,9-triazacyclododec-1-ene (Me4-N3-mc), X = 2-Cl, 4-Cl, 2-OCH3, 4-OCH3) are reported. These paramagnetic nickel(II) complexes have been characterized by both one- and two-dimensional (COSY) 1H NMR techniques. The COSY spectrum of 5 has allowed to achieve the assignment of the phenyl protons of the N,N′-diphenyloxamidate. The crystal structures of [Ni(Me3-N3-mc)(μ-CONC6H4-4-Cl)]2(PF6)2 (6), [Ni(Me3-N3-mc)(μ-CONC6H4-4-OMe)]2(PF6)2 (8) and [Ni(Me4-N3-mc)(μ-CONC6H4-2-Cl)]2(PF6)2 (9) have been determined and their magnetic properties have been studied. The value of magnetic coupling between the two nickel(II) ions across the oxamidate bridge [J = − 37.6 (6), −39.9 (8) and −39.7 cm−1 (9)] is sensitive to the distortion of the coordination sphere of the metal ions and the topology of the molecular bridge.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号