首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 140 毫秒
1.
We report quenching and chemical degradation of polymer-coated quantum dots by reactive oxygen species (ROS), a group of oxygen-containing molecules that are produced by cellular metabolism and are involved in both normal physiological and disease processes such as oxidative signaling, cancer, and atherosclerosis. A major new finding is that hypochlorous acid (HOCl) in its neutral form is especially potent in degrading encapsulated QDs, due to its small size, neutral charge, long half-life, and fast reaction kinetics under physiologic conditions. Thus, small and neutral molecules such as HOCl and hydrogen peroxide (H2O2) are believed to diffuse across the polymer coating layer, leading to chemical oxidation of sulfur or selenium atoms on the QD surface. This "etching" process first generates lattice structural defects (which cause fluorescence quenching) and then produces soluble metal (e.g., cadmium and zinc) and chalcogenide (e.g., sulfur and selenium) species. We also find that significant fluorescence quenching occurs before QD dissolution and that localized surface defects can be repaired or "annealed" by UV light illumination. These results have important implications regarding the long-term fate and potential toxicity of semiconductor nanocrystals in vivo.  相似文献   

2.
Outstanding issues regarding the film formation, redox switching characteristics and the oxygen evolution reaction (OER) electrocatalytic behaviour of multicycled iron oxyhydroxide films in aqueous alkaline solution have been revisited. The oxide is grown using a repetitive potential multicycling technique, and the mechanism of the latter hydrous oxide formation process has been discussed. A duplex layer model of the oxide/solution interphase region is proposed. The acid/base behaviour of the hydrous oxide and the microdispersed nature of the latter material has been emphasised. The hydrous oxide is considered as a porous assembly of interlinked octahedrally coordinated anionic metal oxyhydroxide surfaquo complexes which form an open network structure. The latter contains considerable quantities of water molecules which facilitate hydroxide ion discharge at the metal site during active oxygen evolution, and also charge compensating cations. The dynamics of redox switching has been quantified via analysis of the cyclic voltammetry response as a function of potential sweep rate using the Laviron-Aoki electron hopping diffusion model by analogy with redox polymer modified electrodes. Steady state Tafel plot analysis has been used to elucidate the kinetics and mechanism of oxygen evolution. Tafel slope values of ca. 60 mV dec(-1) and ca. 120 mV dec(-1) are found at low and high overpotentials respectively, whereas the reaction order with respect to hydroxide ion activity changes from ca. 3/2 to ca. 1 as the potential is increased. These observations are rationalised in terms of a kinetic scheme involving Temkin adsorption and the rate determining formation of a physisorbed hydrogen peroxide intermediate on the oxide surface. The dual Tafel slope behaviour is ascribed to the potential dependence of the surface coverage of adsorbed intermediates.  相似文献   

3.
Umile TP  Wang D  Groves JT 《Inorganic chemistry》2011,50(20):10353-10362
Chlorine dioxide, an industrially important biocide and bleach, is produced rapidly and efficiently from chlorite ion in the presence of water-soluble, manganese porphyrins and porphyrazines at neutral pH under mild conditions. The electron-deficient manganese(III) tetra-(N,N-dimethyl)imidazolium porphyrin (MnTDMImP), tetra-(N,N-dimethyl)benzimidazolium (MnTDMBImP) porphyrin, and manganese(III) tetra-N-methyl-2,3-pyridinoporphyrazine (MnTM23PyPz) were found to be the most efficient catalysts for this process. The more typical manganese tetra-4-N-methylpyridiumporphyrin (Mn-4-TMPyP) was much less effective. Rates for the best catalysts were in the range of 0.24-32 TO/s with MnTM23PyPz being the fastest. The kinetics of reactions of the various ClO(x) species (e.g., chlorite ion, hypochlorous acid, and chlorine dioxide) with authentic oxomanganese(IV) and dioxomanganese(V)MnTDMImP intermediates were studied by stopped-flow spectroscopy. Rate-limiting oxidation of the manganese(III) catalyst by chlorite ion via oxygen atom transfer is proposed to afford a trans-dioxomanganese(V) intermediate. Both trans-dioxomanganese(V)TDMImP and oxoaqua-manganese(IV)TDMImP oxidize chlorite ion by 1-electron, generating the product chlorine dioxide with bimolecular rate constants of 6.30 × 10(3) M(-1) s(-1) and 3.13 × 10(3) M(-1) s(-1), respectively, at pH 6.8. Chlorine dioxide was able to oxidize manganese(III)TDMImP to oxomanganese(IV) at a similar rate, establishing a redox steady-state equilibrium under turnover conditions. Hypochlorous acid (HOCl) produced during turnover was found to rapidly and reversibly react with manganese(III)TDMImP to give dioxoMn(V)TDMImP and chloride ion. The measured equilibrium constant for this reaction (K(eq) = 2.2 at pH 5.1) afforded a value for the oxoMn(V)/Mn(III) redox couple under catalytic conditions (E' = 1.35 V vs NHE). In subsequent processes, chlorine dioxide reacts with both oxomanganese(V) and oxomanganese(IV)TDMImP to afford chlorate ion. Kinetic simulations of the proposed mechanism using experimentally measured rate constants were in agreement with observed chlorine dioxide growth and decay curves, measured chlorate yields, and the oxoMn(IV)/Mn(III) redox potential (1.03 V vs NHE). This acid-free catalysis could form the basis for a new process to make ClO(2).  相似文献   

4.
A novel fluorescent turn-on probe, PHC1, for the detection of hypochlorous acid has been developed based on hypochlorous acid-initiated oxidative intramolecular cyclization. Endowed by the fast reaction rate, PHC1 features rapid detection kinetics, as well as high degree of selectivity and sensitivity for HClO.  相似文献   

5.
Dependences of the current efficiency for chlorate and current losses for the oxygen evolution on the anode potential are studied. The study is performed in a cell without directed electrolyte circulation during the electrolysis of chloride–chlorate solutions of various compositions at the ORTA and ORTA-I1 anodes, at different current densities, temperatures, and solution pH. At identical temperatures, the dependences have extremums. The anode potentials corresponding to extremums coincide with critical potentials (found in a polarization study) for anodes covered with coatings containing ruthenium dioxide. The current efficiency for chlorate at ORTA-I1 is higher than that at ORTA, while the extremum region is less pronounced. The problem of how to substantially decrease the specific power consumption in the chlorate production by simultaneously increasing the anodic current density and the electrolysis temperature is considered.  相似文献   

6.
The antioxidative effect of two non-steroidal anti-inflammatory drugs was studied in vitro by measuring the kinetics of degradation of high-molecular weight hyaluronan (HA) in a system comprising hypochlorous acid + CuCl2 + ascorbic acid using a Brookfield rotational viscometer equipped with a Teflon cup and spindle of coaxial cylindrical geometry. The changes in HA chemical structure were investigated by chemiluminometry. When sodium naproxen was added to the system during a running degradative process its inhibitory effect was clearly shown. The inhibition was dependent on the drug concentration. However, when this drug was added to the system before the initiation of HA degradation, no inhibition was seen even at the highest drug concentration tested. The inhibitory effect of acetylsalicylic acid was achieved with a relatively low concentration of the drug and was independent of the experimental model used.  相似文献   

7.
Zhiliang Li 《大学化学》1986,35(12):268-273
Oxygen preparation by potassium chlorate and manganese dioxide is one of the most classical laboratory method. Few study has been made so far on its origination and establishment. Through checking the original roles of potassium chlorate and manganese dioxide, it is found that manganese dioxide was ever first selected as raw material for making oxygen, then led the discovery of chlorine by Scheele and potassium chlorate by Berthollet. Potassium chlorate itself was also ever used for oxygen preparation at a high temperature. In 1832, manganese dioxide was firstly mixed with potassium chlorate for oxygen by Döbereiner and reduces the temperature dramatically. With more following studies, the classic method of oxygen preparation via the two materials was finally established.  相似文献   

8.
Rutile TiO(2) nanoneedles (8 nm × 100 nm) synthesized at room temperature by anodization in perchloric acid (pH < 1) are shown to undergo an interesting reverse phase transformation to anatase nanoparticles (8 nm) at 300 °C only if the chlorate ions are maintained in the ambient medium. When chlorate ions are removed by multiple washing, the rutile phase and the needle morphology are maintained. The mechanism of formation of the ion-stabilized solid and its thermal evolution is discussed.  相似文献   

9.
采用便捷的涉及电沉积和退火过程的两步法在F掺杂的氧化锡基体上制备了高品质的多晶钒酸铋(BiVO4)薄膜,并运用扫描电镜、透射电镜、X射线衍射(XRD)、傅里叶变换红外光谱、紫外-可见光吸收光谱和拉曼光谱表征了所制薄膜的形貌和结构特征.XRD和光学分析结果表明,BiVO4薄膜为纯相的单斜白钨矿晶相结构.将该薄膜通过电化学(EC),光化学(PC)和光电化学(PEC)过程用于水溶液中氯酸离子的多相氧化反应中.采用紫外-可见吸附光谱仪监测氯酸盐浓度的降低.结果发现,在光的照射下采用PEC法时,BiVO4可有效催化氯酸盐的氧化.氯酸盐氧化反应级数为1级,PEC过程的反应速率常数明显高于EC和PC过程的.同时,提出了基于形成了高氯酸离子的催化氧化氯酸盐的反应机理.  相似文献   

10.
The effects of the humic acid (HA) nature and the activated carbon (AC) surface chemistry on the effectiveness of HA removal were investigated. Brown (BHA) and gray (GHA) humic acid fractions of different structure and physicochemical properties were tested in the adsorption process using mesoporous ACs. The modification of chemical structure and surface properties of AC was achieved by ammonization (AC/N) and hydrogen treatment (AC/H). Both approaches led to a decrease in the oxygen content followed by an increase in the carbon basicity, maintaining the porous texture of AC nearly unaltered. Over twice higher removal degree of BHA and GHA was observed for the modified ACs. The kinetics of adsorption of HA fractions have been discussed using the pseudo-second-order model and the intraparticle diffusion model. All ACs showed a higher adsorption capacity toward BHA compared to GHA, which is mainly attributed to the lower molecular weight of BHA. The shape of the equilibrium isotherms indicates a strong competition between water and HA molecules for adsorption sites of the carbon surface.  相似文献   

11.
The chlorite-tetrathionate reaction has been studied spectrophotometrically in the pH range of 4.65-5.35 at T = 25.0 +/- 0.2 degrees C with an ionic strength of 0.5 M, adjusted with sodium acetate as a buffer component. The reaction is unique in that it demonstrates autocatalysis with respect to the hydrogen and chloride ion products and the key intermediate, HOCl. The thermodynamically most-favorable stoichiometry, 2S(4)O(6)2- + 7ClO2- + 6H2O --> 8SO(4)2- + 7Cl- + 12H+, is not found. Under our experimental conditions, chlorine dioxide, the chlorate ion, or both are detected in appreciable amounts among the products. Initial rate studies reveal that the formation of chlorine dioxide varies in an unusual way, with the chlorite ion acting as a self-inhibitor. The reaction is supercatalytic (i.e., second order with respect to autocatalyst H+). The autocatalytic behavior with respect to Cl- comes from chloride catalysis of the chlorite-hypochlorous acid and hypochlorous acid-tetrathionate subsystems. A detailed kinetic study and a model that explains this unusual kinetic behavior are presented.  相似文献   

12.
The complete mineralization of organic pollutants present in wastewater is usually achieved via thermally activated oxygen/air. This process occurs at high temperatures and pressures (300 °C, 200 atm) and often gives small amount of acetic acid as a final product. In this work, we demonstrate using acetic acid as a model compound that organic molecules can be activated electrochemically such that they react at room temperature with oxygen, resulting in mineralization of even acetic acid present in 1 M HClO4 supporting electrolyte. This electrochemically induced activation occurs during anodic polarization of boron-doped diamond electrodes (BDD) in air/oxygen-saturated solutions. The direct evidence for this process was found during electro-oxidation of acetic acid saturated with isotopically labelled 18O2 resulting in evolution of C18O2 and C16O18O. We suggest that the mechanism of activation on BDD is initiated by hydroxyl radicals formed on the electrode surface.  相似文献   

13.
The kinetics and mechanism of water oxidation with cerium(IV) compounds catalyzed by a tetranuclear ruthenium complex containing two polyoxotungstate ligands are reported. Four water molecules are oxidized via an eight-electron process to form two oxygen molecules.  相似文献   

14.
Sluggish oxygen evolution kinetics are one of the key limitations of bismuth vanadate (BiVO4) photoanodes for efficient photoelectrochemical (PEC) water splitting. To address this issue, we report a vanadium oxide (VOx) with enriched oxygen vacancies conformally grown on BiVO4 photoanodes by a simple photo-assisted electrodeposition process. The optimized BiVO4/VOx photoanode exhibits a photocurrent density of 6.29 mA cm−2 at 1.23 V versus the reversible hydrogen electrode under AM 1.5 G illumination, which is ca. 385 % as high as that of its pristine counterpart. A high charge-transfer efficiency of 96 % is achieved and stable PEC water splitting is realized, with a photocurrent retention rate of 88.3 % upon 40 h of testing. The excellent PEC performance is attributed to the presence of oxygen vacancies in VOx that forms undercoordinated sites, which strengthen the adsorption of water molecules onto the active sites and promote charge transfer during the oxygen evolution reaction. This work demonstrates the potential of vanadium-based catalysts for PEC water oxidation.  相似文献   

15.
A series of density functional theory (DFT) based electrochemical models are applied to systematically examine the effect of solvent, local electric field, and electrode potential on oxygen reduction reaction (ORR) kinetics. Specifically, the key elementary reaction steps of molecular oxygen dissociation, molecular oxygen protonation, and reduction of a hydroxyl adsorbate to water over the Pt(111) surface were considered. The local electric field has slight influence on reaction energetics at the vacuum interface. Solvent molecules stabilize surface adsorbates, assisting oxygen reduction. A collective solvation-potential coupled effect is identified by including long range solvent-solvent interactions in the DFT model. The dominant path of the ORR reaction varies with electrode potential and among the modeling approaches considered. The potential dependent reaction path determined from the solvated model qualitatively agrees with experiment ORR kinetics.  相似文献   

16.
Oxidation of organics in the potential region of O2 evolution is supposed to proceed through the oxidation of water to hydroxyl radicals, which then may either be further oxidized to give molecular oxygen or interact with organic molecules in an oxygen transfer reaction. Therefore, the electrode material must ensure (1) the preferential adsorption of the organic compound, (2) the production of adsorbed hydroxyl radicals able to react with this compound in a selective oxidation reaction (with as little as possible oxygen evolution), and (3) a long-term stability. In the present paper, the oxidative decomposition of toluene in sulfuric acid solution on PbO2 coatings deposited on Ti substrate from acidic nitrate + fluoride baths containing Pb2+ and Bi3+ is investigated by voltammetry, electrochemical impedance spectroscopy, and UV spectrophotometry. The chemical composition and structure of the catalytic coatings is characterized with X-ray photoelectron spectroscopy and X-ray diffraction. The catalytic activity is estimated both from current density vs potential and polarization resistance vs potential plots using measurements on the same electrodes in sulfuric acid without toluene to eliminate the oxygen evolution reaction that proceeds in parallel to the oxidation of toluene. A skeletal reaction mechanism of the process is proposed to account for the steady-state and transient response of the catalytic electrodes during oxidation of toluene.  相似文献   

17.
黄睿  温蕴周  彭慧胜  张波 《催化学报》2022,43(1):130-138
开发酸性条件下的析氧反应(OER)电催化剂是质子交换膜(PEM)电解水技术的核心问题.Ru基催化剂作为酸性OER中的基准催化剂,其OER活性被传统的协同质子-电子转移过程带来的比例关系所限制,仍然存在动力学迟缓的问题.基于荷电表面可能有利于加速OER动力学的认识,本文将具有赝电容性质的元素Pb加入Ru基催化剂中以提升O...  相似文献   

18.
The overall performance of water electrolysis suffers from the high kinetic barrier in the oxygen evolution reaction (OER) at the anode. Considerable effort has been made on the fundamental understandings of the reaction mechanisms of OER. Recently, the attention has been given to the OER on magnetic catalysts, which is believed being able to promote the kinetics of an OER process from singlet reactants to triplet oxygen. The process in principle involves spin selective electron transfer. Here, we discuss the effects of spin in OER based on the recent advances and summarize our recently proposed mechanisms of the OER in spin-sensitive pathways under the lattice oxygen oxidation mechanism, the interaction of two M?O entity mechanism, and the adsorbate evolution mechanism.  相似文献   

19.
以TiO2纳米颗粒光催化反应为模型,研究了反应过程中的活性氧( ROS)产生以及活性氧淬灭的反应动力学模型。对苯二甲酸分子与体系中的光催化反应产生的OH·反应,生成具有荧光性质的2-羟基对苯二甲酸( lex=315 nm,lem=425 nm),因此对苯二甲酸作为氧化探针分子与体系中的生物抗氧化剂( AOs)分子竞争与ROS的反应,根据体系的荧光、反应时间以及AOs的浓度建立了AOs淬灭ROS的反应动力学模型。根据此模型推导AOs清除ROS的动力学常数,发现常见的生物抗氧化剂的抗氧化活性大小顺序为:硫辛酸、没食子酸、谷胱甘肽、尿酸、维生素C、维生素E、水溶性维生素E和胆红素。  相似文献   

20.
本文研究了一系列茚苯胺青影像染料的光退色动力学和光退色机理。实验结果表明,这些染料在醋酸丁酯溶液中的光退色符合一级反应动力学。茚苯胺染料光退色过程中存在光氧化反应。用改进的PPP-CI方法计算染料分子的跃迁能和电荷密度,结果表明,茚苯胺染料的光退色速率与染料分子中某些原子上的电荷密度有关,单重态氧可能在光退色过程中起着重要作用。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号