首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The photochemical behavior of differently substituted N‐arylsulfonimides was investigated. Homolysis of the S?N bond took place as the exclusive path from the singlet state to afford both N‐arylsulfonamides and photo‐Fries adducts, the amount of which depended on reaction conditions and aromatic substituents. Sulfinic and sulfonic acids were released upon irradiation under deaerated and oxygenated conditions, respectively. The nature of the excited states and intermediates involved were proved by laser flash photolysis and EPR experiments. These results highlighted the potential of such compounds as nonionic photoacid generators able to photorelease up to two equivalents of a strong acid for each mole of substrate.  相似文献   

2.
The nitric acid oxidation of multiwalled carbon nanotubes leading to surface carboxylic groups has been investigated both experimentally and theoretically. The experimental results show that such a reaction involves the initial rapid formation of carbonyl groups, which are then transformed into phenol or carboxylic groups. At room temperature, this reaction takes place on the most reactive carbon atoms. At higher temperatures a different mechanism would operate, as evidenced by the difference in activation energies. Experimental data can be partially related to first-principles calculations, showing a multistep functionalization mechanism. The theoretical aspects of the present article have led us to propose the most efficient pathway leading to carboxylic acid functional groups on the surface. Starting from mono-vacancies, it ends up with the synergistic formation of dangling -COOH groups and the enlargement of the vacancies.  相似文献   

3.
4.
5.
During the last 40 years, researchers investigating photoinitiated cationic polymerizations have delivered tremendous success in both industrial and academic settings. A myriad of photoinitiating systems have been developed, thus allowing polymerization of a broad array of monomers (e.g., epoxides, vinyl ethers, alkenes, cyclic ethers, and lactones) under practical, inexpensive, and environmentally benign conditions. More recently, owing to progress in photoredox catalysis, photocontrolled cationic polymerization has emerged as a means to precisely regulate polymer chain growth. This Minireview provides a concise historical perspective on cationic polymerization induced by light and discusses the latest advances in both photoinitiated and photocontrolled processes. The latter are exciting new directions for the field that will likely impact industries ranging from micropatterning to the synthesis of complex biomaterials and sequence‐controlled polymers.  相似文献   

6.
7.
《Chemphyschem》2003,4(8):843-847
The atmospheric reaction (1) OH + O3→HO2 + O2 was investigated theoretically by using MP2, QCISD, QCISD(T), and CCSD(T) methods with various basis sets. At the highest level of theory, namely, QCISD, the reaction is direct, with only one transition state between reactants and products. However, at the MP2 level, the reaction proceeds through a two‐step mechanism and shows two transition states, TS1 and TS2 , separated by an intermediate, Int . The different methodologies employed in this paper consistently predict the barrier height of reaction (1) to be within the range 2.16–5.11 kcal mol?1, somewhat higher than the experimental value of 2.0 kcal mol?1.  相似文献   

8.
Daytime sources of nitrous acid (HONO) in the atmospheric boundary layer.   总被引:2,自引:0,他引:2  
Nitrous acid (HONO) is an important precursor of the hydroxyl radical (OH), the self-cleaning agent of the atmosphere and a key species in the formation of harmful photooxidants during summer smog. Recent field measurements using very sensitive HONO instruments have shown that daytime HONO concentrations are much higher than has been assumed previously and that the contribution of HONO to the radical formation was underestimated in the past. A strong photochemical HONO source has been proposed, which contributes to the primary OH radical production up to 56 %. These exciting results initiated new laboratory studies, in which new sources of HONO have been identified. It is demonstrated that HONO is photochemically formed 1) on surfaces treated with nitric acid, 2) by reduction of NO(2) on photosensitized organic surfaces like humic acids and c) in the gas phase photolysis of ortho-substituted nitroaromatics. Although significant uncertainties still exist on the exact mechanisms, these additional sources might explain daytime observations in the atmosphere and demonstrate that HONO should be generally measured in field campaigns, besides other radical sources.  相似文献   

9.
《Chemphyschem》2003,4(4):366-372
The atmospheric reaction NH2+O3→H2NO+O2 has been investigated theoretically by using MP2, QCISD, QCISD(T), CCSD(T), CASSCF, and CASPT2 methods with various basis sets. At the MP2 level of theory, the hypersurface of the potential energy (HPES) shows a two step reaction mechanism. Therefore, the mechanism proceeds along two transition states (TS1 and TS2), separated by an intermediate designated as Int. However, when the single‐reference higher correlated QCISD and the multiconfigurational CASSCF methodologies have been employed, the minimum structure Int and TS2 are not found on the HPES, which thus confirms a direct reaction mechanism. Single‐reference high correlated and multiconfigurational methods consistently predict the barrier height of the reaction to be within the range of 3.9 to 6.6 kcal mol?1, which is somewhat higher than the experimental value. 1 The calculated reaction enthalpy is ?67.7 kcal mol?1.  相似文献   

10.
Long B  Long ZW  Wang YB  Tan XF  Han YH  Long CY  Qin SJ  Zhang WJ 《Chemphyschem》2012,13(1):323-329
The formic acid catalyzed gas‐phase reaction between H2O and SO3 and its reverse reaction are respectively investigated by means of quantum chemical calculations at the CCSD(T)//B3LYP/cc‐pv(T+d)z and CCSD(T)//MP2/aug‐cc‐pv(T+d)z levels of theory. Remarkably, the activation energy relative to the reactants for the reaction of H2O with SO3 is lowered through formic acid catalysis from 15.97 kcal mol?1 to ?15.12 and ?14.83 kcal mol?1 for the formed H2O ??? SO3 complex plus HCOOH and the formed H2O ??? HCOOH complex plus SO3, respectively, at the CCSD(T)//MP2/aug‐cc‐pv(T+d)z level. For the reverse reaction, the energy barrier for decomposition of sulfuric acid is reduced to ?3.07 kcal mol?1 from 35.82 kcal mol?1 with the aid of formic acid. The results show that formic acid plays a strong catalytic role in facilitating the formation and decomposition of sulfuric acid. The rate constant of the SO3+H2O reaction with formic acid is 105 times greater than that of the corresponding reaction with water dimer. The calculated rate constant for the HCOOH+H2SO4 reaction is about 10?13 cm3 molecule?1 s?1 in the temperature range 200–280 K. The results of the present investigation show that formic acid plays a crucial role in the cycle between SO3 and H2SO4 in atmospheric chemistry.  相似文献   

11.
New route to gas‐phase OH. : UV photolysis of gaseous o‐nitrobenzaldehyde forms OH radicals via the transformation into the ketene or o‐nitrosobenzoic acid intermediate (see figure). The OH. product is monitored by single‐photon laser‐induced fluorescence (LIF).

  相似文献   


12.
The photocatalyzed ortho‐selective migration on a pyridyl ring has been achieved for the site‐selective trifluoromethylative pyridylation of unactivated alkenes. The overall process is initiated by the selective addition of a CF3 radical to the alkene to provide a nucleophilic alkyl radical intermediate, which enables an intramolecular endo addition exclusively to the ortho‐position of the pyridinium salt. Both secondary and tertiary alkyl radicals are well‐suited for addition to the C2‐position of pyridinium salts to ultimately provide synthetically valuable C2‐fluoroalkyl functionalized pyridines. Moreover, the method was successfully applied to the reaction with P‐centered radicals. The utility of this transformation was further demonstrated by the late‐stage functionalization of complex bioactive molecules.  相似文献   

13.
14.
Gas phase nitration of benzene on ZSM-5 zeolite has been studied at 140–170°C. Increase in the HNO3/C6H6 ratio of the starting mixture was shown to increase the nitrobenzene yield. Process parameters worsened with time since reagents and products were strongly adsorbed and left the zeolite surface only at 220–250°C as CO, CO2 and NO.  相似文献   

15.
As a key element in the construction of complex organic scaffolds, the formation of C?C bonds remains a challenge in the field of synthetic organic chemistry. Recent advancements in single‐electron chemistry have enabled new methods for the formation of various C?C bonds. Disclosed herein is the development of a novel single‐electron reduction of acyl azoliums for the formation of ketones from carboxylic acids. Facile construction of the acyl azolium in situ followed by a radical–radical coupling was made possible merging N‐heterocyclic carbene (NHC) and photoredox catalysis. The utility of this protocol in synthesis was showcased in the late‐stage functionalization of a variety of pharmaceutical compounds. Preliminary investigations using chiral NHCs demonstrate that enantioselectivity can be achieved, showcasing the advantages of this protocol over alternative methodologies.  相似文献   

16.
As a key element in the construction of complex organic scaffolds, the formation of C−C bonds remains a challenge in the field of synthetic organic chemistry. Recent advancements in single-electron chemistry have enabled new methods for the formation of various C−C bonds. Disclosed herein is the development of a novel single-electron reduction of acyl azoliums for the formation of ketones from carboxylic acids. Facile construction of the acyl azolium in situ followed by a radical–radical coupling was made possible merging N-heterocyclic carbene (NHC) and photoredox catalysis. The utility of this protocol in synthesis was showcased in the late-stage functionalization of a variety of pharmaceutical compounds. Preliminary investigations using chiral NHCs demonstrate that enantioselectivity can be achieved, showcasing the advantages of this protocol over alternative methodologies.  相似文献   

17.
18.
The potential energy surface for the Cl + propene reaction was analyzed at the MP2 level using Pople's 6-31G(d,p) and 6-311+G(d,p), and Dunning's cc-pVDZ and aug-cc-pVDZ basis sets. Two different channels for the addition reaction leading to chloroalkyl radicals and five alternative channels for the abstraction reaction leading to C(3)H(5) (.) + HCl were explored. The corresponding energy profiles were computed at the QCISD(T)/aug-cc-pVDZ//MP2/aug-cc-pVDZ level of theory. Theoretical results suggest that the previously established mechanism consisting of (1) direct abstraction and (2) addition-elimination steps is instead made up of (1) addition through an intermediate and (2) two-step abstraction processes. No direct abstraction mechanism exists on the potential energy surface. The kinetic equations derived for the new mechanism are consistent with the pressure dependence experimentally observed for this reaction.  相似文献   

19.
New developments and recent applications of pulsed and miniaturised Laval nozzle technology allowing many gas-phase molecular processes to be studied at very low temperatures are highlighted. In the present Minireview we focus on molecular energy transfer and reactions of molecular radicals (e.g. OH) with neutral molecules. We show that with the combination of pulsed laser photolysis and sensitive laser-induced fluorescence detection a large number of fast reactions of radicals with more or less complex neutral molecules can be measured in Laval nozzle expansions nowadays. It is also demonstrated that collisional energy transfer of neutral molecules can be measured via kinetically controlled selective fluorescence (KCSF) excitation down to 58 Kelvin. Finally, we show that even the primary steps in the oxidation of biomolecules or biomolecular building blocks initiated by OH radicals can be followed at low temperatures. The temperature dependence of the measured rate constants is the key for an understanding of the underlying molecular mechanisms and the Laval nozzle expansion provides a unique environment for these measurements. The experimental finding that many reactions between radicals and neutral species can be rapid at low temperatures are discussed in terms of pre-reactive complexes formed in the overall complex forming bimolecular reactions.  相似文献   

20.
Cyanines covering the absorption in the near infrared (NIR) are attractive for distinct applications. They can interact either with lasers exhibiting line-shaped focus emitting at both 808 and 980 nm or bright high intensity NIR-LEDs with 805 nm emission, respectively. This is drawing attention to Industry 4.0 applications. The major deactivation occurs through a non-radiative process resulting in the release of heat into the surrounding, although a small fraction of radiative deactivation also takes place. Most of these NIR-sensitive systems possess an internal activation barrier to react in a photonic process with initiators resulting in the generation of reactive radicals and acidic cations. Thus, the heat released by the NIR absorber helps to bring the system, consisting of an NIR sensitizer and initiator, above such internal barriers. Molecular design strategies making these systems more compatible with distinct applications in a certain oleophilic surrounding are considered as a big challenge. This includes variations of the molecular pattern and counter ions derived from super acids exhibiting low coordinating properties. Further discussion focusses on the use of such systems in Chemistry 4.0 related applications. Intelligent software tools help to improve and optimize these systems combining chemistry, engineering based on high-throughput formulation screening (HTFS) technologies, and machine learning algorithms to open up novel solutions in material sciences.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号