首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Host-guest complexes between nucleobases or nucleosides and beta-cyclodextrin can be observed by electrospray ionization mass spectrometry (ESI-MS) and their relative abundances appear to correlate with the condensed-phase binding order. Using Fourier transform ion cyclotron resonance mass spectrometry, the extent of the interactions between the host oligosaccharide and guest species have also been examined for permethylated beta-cyclodextrin : adenine/deoxyadenosine and permethylated maltoheptaose : adenine/deoxyadenosine using gas-phase exchange reactions with the gaseous amines, n-propylamine and ethylenediamine. The ease of guest exchange in the gas-phase follows the order : deoxyadenosine > adenine > deoxycytidine > cytosine, which is in contrast to their relative binding order in solution. Collision-induced dissociation (CID) has been used to probe the fragmentation behavior of oligosaccharide : nucleobase/nucleoside complexes. Under these conditions the inclusion complexes either (a) dissociate, (b) result in cleavage of the host oligosaccharide or (c) result in cleavage of the guest molecule. This study has shown that the preferred dissociation pathway of these complexes depends on the structures of both the cyclodextrin and guest molecule.  相似文献   

2.
Ultrafast spectroscopy allows chemical and physical processes to be observed on time-scales faster than the nuclear motion within molecules. This tutorial review explores how such experiments, and specifically time-resolved photoelectron spectroscopy on gas-phase cluster anions, provide a molecular-level understanding of the processes that are normally associated with condensed-phase dynamics.  相似文献   

3.
The experimental M-A and M-B distances in several series of [MAnBm-n]-type complexes have been studied by DFT. Many of the structural features of the series, such as trans influences and sterically induced bond elongations, are not reproduced correctly in gas-phase DFT calculations. However, the correct trends are recovered by explicitly including environmental effects via the COSMO solvation model. These observations imply that the condensed-phase environment plays a critical role in determining the geometric structure of coordination complexes. Thus, any apparently satisfactory reproduction of the condensed-phase structure by an in vacuo calculation may mask an incorrect treatment of the interplay between different ligands attached to the same metal center.  相似文献   

4.
The gas-phase dynamics of two classes of photochromic molecules, three spiropyrans and one spirooxazine, have been investigated here using both time-resolved mass spectrometry and photoelectron spectroscopy approaches. It is, to our knowledge, the first gas-phase experiment done of these kinds of molecules. The molecules are excited at 266 nm and probed at 800 nm. The comparison of the dynamics of these four molecules has been used to propose a sequential photoisomerization mechanism involving four steps occurring in the first 100 ps. Each of these steps is discussed and related to the observed condensed-phase dynamics and to theoretical calculations.  相似文献   

5.
Riedel S  Renz M  Kaupp M 《Inorganic chemistry》2007,46(14):5734-5738
The structures and stabilities of technetium fluorides in high oxidation states have been studied quantum-chemically at density functional theory (B3LYP) and coupled-cluster (CCSD(T)) levels. The calculations indicate clearly that technetium heptafluoride, TcF7, has a good chance of existence and preparation, thus providing the first heptafluoride in the 4d series. The [TcF6]+ cation, a potential precursor, is also computed to be thermochemically stable against gas-phase elimination reactions. The problem with such highly fluorinated complexes appears thus to be mainly in difficult synthetic access under typical condensed-phase conditions. Matrix-isolation techniques or gas-phase experiments appear to be better suited as starting points.  相似文献   

6.
The combustion behaviour of phosphorus- and silicon-containing benzoxazine-epoxy systems has been studied by LOI and cone calorimetry giving clear evidence that incorporation of 3.5% P into the benzoxazine-epoxy systems resulted in flame retardation while the silicon-containing copolymer was found to have no improvement in the LOI and cone calorimeter data, with values similar to the polymers without heteroatom, thus indicating that the 3.9% silicon content has no flame retarding effect. The peak heat release rate is reduced significantly for the phosphorus-containing benzoxazine as a result of a combination of condensed-phase and gas-phase mechanisms. The incorporation of phosphorus or silicon into the modified benzoxazine-epoxy system increases the smoke hazard and the CO emissions compared to the heteroatom-free system.  相似文献   

7.
Condensed-phase effects on the structure and bonding of C(6)H(5)CN-BF(3) and (CH(3))(3)CCN-BF(3) are illustrated by a variety of results, and these are compared to analogous data for the closely related complex CH(3)CN-BF(3). For the most part, the structural properties of C(6)H(5)CN-BF(3) and (CH(3))(3)CCN-BF(3) are quite similar, not only in the gas phase but also in the solid state and in argon matrices. However, the structures do change significantly from medium to medium, and these changes are reflected in the data presented below. Specifically, the measured crystallographic structure of C(6)H(5)CN-BF(3) (s) has a B-N distance that is 0.17 A shorter than that in the equilibrium gas-phase structure obtained via B3LYP calculations. Notable differences between calculated gas-phase frequencies and measured solid-state frequencies for both C(6)H(5)CN-BF(3) and (CH(3))(3)CCN-BF(3) were also observed, and in the case of (CH(3))(3)CCN-BF(3), these data implicate a comparable difference between solid-state and gas-phase structure, even in the absence of crystallographic results. Frequencies measured in argon matrices were found to be quite similar for both complexes and also very near those measured previously for CH(3)CN-BF(3), suggesting that all three complexes adopt similar structures in solid argon. For C(6)H(5)CN-BF(3) and (CH(3))(3)CCN-BF(3), matrix IR frequencies differ only slightly from the computed gas-phase values, but do suggest a slight compression of the B-N bond. Ultimately, it appears that the varying degree to which these systems respond to condensed phases stems from subtle differences in the gas-phase species, which are highlighted through an examination of B-N distance potentials from B3LYP calculations. The larger organic substituents appear to stabilize the potential near 1.8 A, so that the structures are more localized in that region prior to any condensed-phase interactions. As a result, the condensed-phase effects on the structural properties of C(6)H(5)CN-BF(3) and (CH(3))(3)CCN-BF(3) are much less pronounced than those for CH(3)CN-BF(3).  相似文献   

8.
Experimental observations are presented on condensed-phase analogues of gas-phase dipole-bound anions and negatively charged clusters of polar molecules. Both monomers and small clusters of such molecules can reversibly trap conduction band electrons in dilute alkane solutions. The dynamics and energetics of this trapping have been studied using pulse radiolysis-transient absorption spectroscopy and time-resolved photoconductivity. Binding energies, thermal detrapping rates, and absorption spectra of excess electrons attached to monomer and multimer solute traps are obtained, and possible structures for these species are discussed. "Dipole coagulation" (stepwise growth of the solute cluster around the cavity electron) predicted by Mozumder in 1972 is observed. The acetonitrile monomer is shown to solvate the electron by its methyl group, just as the alkane solvent does. The electron is dipole-bound to the CN group; the latter points away from the cavity. The resulting negatively charged species has a binding energy of 0.4 eV and absorbs in the infrared. Molecules of straight-chain aliphatic alcohols solvate the excess electron by their OH groups; at equilibrium, the predominant electron trap is a trimer or a tetramer, and the binding energy of this solute trap is ca. 0.8 eV. Trapping by smaller clusters is opposed by the entropy that drives the equilibrium toward the electron in a solvent trap. For alcohol monomers, the trapping does not occur; a slow proton-transfer reaction occurs instead. For the acetonitrile monomer, the trapping is favored energetically, but the thermal detachment is rapid (ca. 1 ns). Our study suggests that a composite cluster anion consisting of a few polar molecules imbedded in an alkane "matrix" might be the closest gas-phase analogue to the core of solvated electron in a neat polar liquid.  相似文献   

9.
《Tetrahedron》1987,43(12):2831-2841
The reactivity of selected dihalobenzenes toward free isopropyl cations has been studied in the gas phase by a combination of chemical ionization (CI) mass spectrometry with a radiolytic approach. In particular, the reactivity of m- and p-bromofluorobenzene and of m- and p-chlorofluorobenzene has been investigated in propane gas at 50–720 Torr and 37.5°C, measuring the substrate and positional selectivity of the alkylation, and compared with condensed-phase isopropylation under typical Friedel-Crafts conditions. The comparison has allowed detection of mechanistic peculiarities of the gas-phase reaction, traced to the participation of the halogen substituents, which enhances ortho orientation. A noteworthy feature of the gas-phase Isopropylation of 4-bromofluorobenzene is the formation of 2-bromo-4-fluorocumene in significant yields, pointing to the occurrence of “ipso” attack at the bromine-bearing ring carbon.  相似文献   

10.
Complete Basis Set and Gaussian-n methods were combined with CPCM continuum solvation methods to calculate pK(a) values for six carboxylic acids. An experimental value of -264.61 kcal/mol for the free energy of solvation of H(+), DeltaG(s)(H(+)), was combined with a value for G(gas)(H(+)) of -6.28 kcal/mol to calculate pK(a) values with Cycle 1. The Complete Basis Set gas-phase methods used to calculate gas-phase free energies are very accurate, with mean unsigned errors of 0.3 kcal/mol and standard deviations of 0.4 kcal/mol. The CPCM solvation calculations used to calculate condensed-phase free energies are slightly less accurate than the gas-phase models, and the best method has a mean unsigned error and standard deviation of 0.4 and 0.5 kcal/mol, respectively. The use of Cycle 1 and the Complete Basis Set models combined with the CPCM solvation methods yielded pK(a) values accurate to less than half a pK(a) unit.  相似文献   

11.
Summary Transition metal oxides like Fe2O3, Ni2O3, Co2O3 and MnO2 suppress the combustion of polystyrene. The effect has been explained on the basis of condensed-phase and gas-phase reactions.With 2 figures and 1 table  相似文献   

12.
While the thermochemical stability of gas-phase HgF4 against F2 elimination was predicted by accurate quantum chemical calculations more than a decade ago, experimental verification of "truly transition-metal" mercury(IV) chemistry is still lacking. This work uses detailed density functional calculations to explore alternative species that might provide access to condensed-phase Hg(IV) chemistry. The structures and thermochemical stabilities of complexes Hg(IV)X4 and Hg(IV)F2X2 (X- = AlF4-, Al2F7-, AsF6-, SbF6-, As2F11-, Sb2F11-, OSeF5-, OTeF5-) have been assessed and are compared with each other, with smaller gas-phase HgX4 complexes, and with known related noble gas compounds. Most species eliminate F2 exothermically, with energies ranging from only about -60 kJ mol(-1) to appreciable -180 kJ mol(-1). The lower stability of these species compared to gas-phase HgF4 is due to relatively high coordination numbers of six in the resulting Hg(II) complexes that stabilize the elimination products. Complexes with AsF6 ligands appear more promising than their SbF6 analogues, due to differential aggregation effects in the Hg(II) and Hg(IV) states. HgF2X2 complexes with X- = OSeF5- or OTeF5- exhibit endothermic fluorine elimination and relatively weak interactions in the Hg(II) products. However, elimination of the peroxidic (OEF5)2 coupling products of these ligands provides an alternative exothermic elimination pathway with energies between -120 and -130 kJ mol(-1). While all of the complexes investigated here thus have one exothermic decomposition channel, there is indirect evidence that the reactions should exhibit nonnegligible activation barriers. A number of possible synthetic pathways towards the most interesting condensed-phase Hg(IV) target complexes are proposed.  相似文献   

13.
The efficiency of HCO formation stemming from non-energetic H-atoms and CO molecules is highlighted both in the condensed phase and within a neon matrix environment, which is half-way between the condensed-phase and gas-phase. Our experiments demonstrated that HCO production within the neon-matrix needed very little or no activation energy. The efficiency of HCO formation depended only on the capability of H-atoms to diffuse in the solid and to subsequently encounter CO molecules. The novelty of the presented matrix experiment sheds light on the debated question of whether activation energy is required in order to produce HCO, because of the use of non-energetic ground state H-atoms within the neon-matrix.  相似文献   

14.
Thermodynamics of reactions of vanadium oxide clusters with SO2 are studied at the BPW91/LANL2DZ level of theory. BPW91/LANL2DZ is insufficient to properly describe relative V-O and S-O bond strengths of vanadium and sulfur oxides. Calibration of theoretical results with experimental data is necessary to compute reliable enthalpy changes for reactions between VxOy and SO2. Theoretical results indicate SO2 to SO conversion occurs for oxygen-deficient clusters and SO2 to SO3 conversion occurs for oxygen-rich clusters. Stable intermediate structures of VOy (y = 1 - 4) clusters with SO2 are also obtained at the BPW91/TZVP level of theory. Some possible mechanisms for SO3 formation and catalyst regeneration for condensed-phase systems are suggested. These results are in agreement with, and complement, gas-phase experimental studies of neutral vanadium oxide clusters.  相似文献   

15.
Riedel S  Kaupp M 《Inorganic chemistry》2006,45(26):10497-10502
The structures and stabilities of various osmium fluorides and oxyfluorides in high oxidation states have been studied by quantum-chemical calculations at DFT (B3LYP), MP2, CCSD, and CCSD(T) levels. The calculations indicate that the homoleptic fluorides all the way up to OsF8 may exist, even though OsF8 will be difficult to prepare. The last missing osmium oxyfluoride, OsOF6, is computed to be thermochemically stable against mononuclear gas-phase elimination reactions. The problem with the nonexistence of such highly fluorinated complexes appears thus to be mainly in difficult synthetic access under typical condensed-phase conditions. Matrix-isolation techniques might provide a means to characterize the highly fluorinated OsVIII and OsVII species.  相似文献   

16.
The specific rotation of (P)-2,3-hexadiene (1) was measured as a function of wavelength for the gas phase, the neat liquid, and solutions. There was a surprisingly large difference between the gas phase and condensed phase values. The specific rotation was calculated using B3LYP and CCSD, and the difference in energy between the three low energy conformers was estimated at the G3 level. The Boltzmann-averaged CCSD-calculated rotations using the gauge independent velocity gauge representation, as well as the B3LYP values, are in agreement with the gas-phase experimental values. In order to avoid possible problems associated with the conformers of 1, 2,3-pentadiene (2) also was examined. Here again, there was a large difference between the gas-phase and condensed-phase specific rotations, with the CCSD velocity gauge (and B3LYP) results being close to the gas-phase experimental values. The possibility that 2,3-pentadiene could be distorted on going from the gas to liquid phase, thereby accounting for the effect of phase on the specific rotation, was examined via a Monte Carlo statistical mechanics simulation. No effect on the geometry was found. Specific rotations of 1 found in solutions were similar to those for the liquid phase, indicating that the phase difference was not due to association.  相似文献   

17.
The application of electrospray ionisation mass spectrometry (ESI-MS) as a direct method for detecting reactive intermediates is a technique of developing importance in the routine monitoring of solution-phase reaction pathways. Here, we utilise a novel on-line photolysis ESI-MS approach to detect the photoproducts of riboflavin in aqueous solution under mildly alkaline conditions. Riboflavin is a constituent of many food products, so its breakdown processes are of wide interest. Our on-line photolysis setup allows for solution-phase photolysis to occur within a syringe using UVA LEDs, immediately prior to being introduced into the mass spectrometer via ESI. Gas-phase photofragmentation studies via laser-interfaced mass spectrometry of deprotonated riboflavin, [RF − H], the dominant solution-phase species under the conditions of our study, are presented alongside the solution-phase photolysis. The results obtained illustrate the extent to which gas-phase photolysis methods can inform our understanding of the corresponding solution-phase photochemistry. We determine that the solution-phase photofragmentation observed for [RF − H] closely mirrors the gas-phase photochemistry, with the dominant m/z 241 condensed-phase photoproduct also being observed in gas-phase photodissociation. Further gas-phase photoproducts are observed at m/z 255, 212, and 145. The value of exploring both the gas- and solution-phase photochemistry to characterise photochemical reactions is discussed.  相似文献   

18.
Knowledge of the structure of protein?Cligand complexes can aid in understanding their roles within complex biological processes. Here we use electrospray ionization (ESI) coupled to a Fourier transform ion cyclotron resonance mass spectrometer to investigate the noncovalent binding of the macrocycle cucurbit[7]uril (CB7) to bovine insulin. Recent condensed-phase experiments (Chinai et al., J. Am. Chem. Soc. 133:8810?C8813, 2011) indicate that CB7 binds selectively to the N-terminal phenylalanine of the insulin B-chain. Competition experiments employing ESI mass spectrometry to assess complex formation between CB7 and wild type insulin B-chain vs. a mutant B-chain, confirm that the N-terminal phenylalanine plays in important role in solution-phase binding. However, analysis of fragment ions produced by electron capture dissociation (ECD) of CB7 complexed to intact insulin and to the insulin B-chain suggests a different picture. The apparent gas-phase binding site, as identified by the ECD, lies further along the insulin B-chain. Together, these studies thus indicate that the CB7 ligand migrates in the ESI mass spectrometry analysis. Migration is likely aided by the presence of additional interactions between CB7 and the insulin B-chain, which are not observed in the crystal structure. While this conformational difference may result simply from the removal of solvent and addition of excess protons by the ESI, we propose that the migration may be enhanced by charge reduction during the ECD process itself because ion-dipole interactions are key to CB7 binding. The results of this study caution against using ECD-MS as a stand-alone structural probe for the determination of solution-phase binding sites.  相似文献   

19.
It is demonstrated that many-body force field models based solely on pairwise Coulomb screening cannot simultaneously reproduce both gas-phase and condensed-phase polarizability limits. Several many-body force field model forms are tested and compared with basis set-corrected ab initio results for a series of bifurcated water chains. Models are parameterized to reproduce the ab initio polarizability of an isolated water molecule, and pairwise damping functions are set to reproduce the polarizability of a water dimer as a function of dimer separation. When these models are applied to extended water chains, the polarization is over-predicted, and this over-polarization increased as a function of the overlap of molecular orbitals as the chains are compressed. This suggests that polarizable models based solely on pairwise Coulomb screening have some limitations, and that coupling with non-classical many-body effects, in particular exchange terms, may be important.  相似文献   

20.
A systematic investigation of a novel epoxide and thioepoxide ring expansion reaction promoted by gaseous acylium and thioacylium ions is reported. As ab initio calculations predict, and 18O-labeling and MS3 pentaquadrupole experiments demonstrate, the reaction proceeds by initial O(S)-acylation of the (thio)epoxides followed by rapid intramolecular nucleophilic attack that results in three-to-five-membered ring expansion, and forms cyclic 1,3-dioxolanylium, 1,3-oxathiolanylium, or 1,3-dithiolanylium ions. This gas-phase reaction is analogous to a condensed-phase reaction long since described by H. Meerwein (Chem. Ber. 1955, 67, 374), and is termed as "the gas-phase Meerwein reaction"; it occurs often to great extents or even exclusively, but in some cases, particularly for the most basic (thio)epoxides and the most acidic (thio)acylium ions, proton transfer (eventually hydride abstraction) competes efficiently, or even dominates. When (thio)epoxides react with (thio)-acylium ions, the reaction promotes O(S)-scrambling; when epoxides react with thioacylium ions and the adducts are dissociated, it promotes S/O replacement. An analogous four-to-six-membered ring expansion also occurs predominantly in reactions of trimethylene oxide with acylium and thioacylium ions.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号