首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The bulk dense Pb[(Mn0.33Nb0.67)0.5(Mn0.33Sb0.67)0.5]0.08(ZrxTi1−x)0.92O3 pyroelectric ceramics have been successfully prepared by the conventional solid method. The effect of three phases coexistence in the ceramics is studied. When x = 0.95 and 0.85 in the ceramics, the maximum pyroelectric coefficient peaks appear at 23 °C and 45 °C, and the maximum values are 26.5 × 10−4 C/m2 °C and 25.5 × 10−4 C/m2 °C, respectively. The maximum pyroelectric coefficient appears large while the peaks widths are small. When the two kinds of ceramic powders mixed with the mol ratio of 2:1, the pyroelectric coefficient of the ceramics is above 10.0 × 10−4 C/m2 °C in a broad temperature range from 20 °C to 55 °C. The possible physical mechanism of the temperature broadened phenomenon is briefly discussed.  相似文献   

2.
The glasses with the composition of 37.5Li2O–(25 − x)Fe2O3xNb2O5–37.5P2O5 (mol%) (x = 5,10,15) are prepared, and it is found that the addition of Nb2O5 is effective for the glass formation in the lithium iron phosphate system. The glass–ceramics consisting of Nasicon-type Li3Fe2(PO4)3 crystals with an orthorhombic structure are developed through conventional crystallization in an electric furnace, showing electrical conductivities of 3 × 10− 6 Scm− 1 at room temperature and the activation energies of 0.48 eV (x = 5) and 0.51 eV (x = 10) for Li+ ion conduction in the temperature range of 30–200 °C. A continuous wave Nd:YAG laser (wavelength: 1064 nm) with powers of 0.14–0.30 W and a scanning speed of 10 μm/s is irradiated onto the surface of the glasses, and the formation of Li3Fe2(PO4)3 crystals is confirmed from XRD analyses and micro-Raman scattering spectra. The crystallization of the precursor glasses is considered as new route for the fabrication of Li3Fe2(PO4)3 crystals being candidates for use as electrolyte materials in lithium ion secondary batteries.  相似文献   

3.
Effects of ZnO addition on electrical properties and low-temperature sintering of BiFeO3-modified Pb(Zr,Ti)O3–Pb(Fe2/3W1/3)O3–Pb(Mn1/3Nb2/3)O3 were investigated. The investigations revealed that the sintering temperature can be decreased to 950 °C, and the favorable properties were obtained with 0.10 wt% ZnO added ceramics. The electrical properties were as follows: d33 = 313 pC/N, Kp = 0.56, tan δ = 0.0053, εr = 1407 and Tc = 295 °C, which showed that this system was a promising material for the multilayer devices application.  相似文献   

4.
The microstructures and the microwave dielectric properties of the (1 − x)(Mg0.95Co0.05)TiO3x(Na0.5La0.5)TiO3 ceramic system were investigated. Two-phase system was confirmed by the XRD patterns and the EDX analysis. A co-existed second phase (Mg0.95Co0.05)Ti2O5 was also detected. The microwave dielectric properties are strongly related to the density and the matrix of the specimen. A new microwave dielectric material 0.88(Mg0.95Co0.05)TiO3–0.12(Na0.5La0.5)TiO3, possessing an excellent combination of dielectric properties: εr  22.36, Q × f  110,000 GHz (at 9 GHz), τf  2.9 ppm/°C), is proposed as a candidate dielectric for GPS patch antennas.  相似文献   

5.
Zn1−xMnxFe2O4 (x = 0, 0.2 and 0.4) nanomaterials were synthesized by sol–gel citrate method and studied structural and gas sensing properties. The structural characteristics of synthesized nanomaterials were studied by X-ray diffraction measurement (XRD) and transmission electron microscope (TEM). The results revealed that the particle size is in the range of 30–35 nm for Mn–Zn ferrite with good crystallinity. The gas sensing properties were studied towards reducing gases like LPG, CH4, CO and ethanol and it is observed that Mn–Zn ferrite shows high response to ethanol at relatively lower operating temperature. The Zn0.6Mn0.4Fe2O4 nanomaterial shows better sensitivity towards ethanol at an operating temperature 300 °C. Incorporation of 1.5 wt.% Pd improved the sensitivity, selectivity, response time and reduced the operating temperature from 300 °C to 230 °C for ethanol sensor. The response time of 200 ppm ethanol in air is about 10s.  相似文献   

6.
We fabricated nano-carbon (NC) doped MgB2 bulks using an in situ process in order to improve the critical current density (Jc) under a high magnetic field and evaluated the correlated effects of the doped carbon content and sintering temperature on the phase formation, microstructure and critical properties. MgB2−xCx bulks with x = 0 and 0.05 were fabricated by pressing the powder into pellets and sintering at 800 °C, 900 °C, or 1000 °C for 30 min.We observed that NC was an effective dopant for MgB2 and that part of it was incorporated into the MgB2 while the other part remained (undoped), which reduced the grain size. The actual C content was estimated to be 68–90% of the nominal content. The NC doped samples exhibited lower Tc values and better Jc(B) behavior than the undoped samples. The doped sample sintered at 900 °C showed the highest Jc value due to its high doping level, small amount of second phase, and fine grains. On the other hand, the Jc was decreased at a sintering temperature of 1000 °C as a result of the formation of MgB4 phase.  相似文献   

7.
The chemical and electrochemical insertion of magnesium into α-U3O8 was achieved at ambient and elevated temperatures with the topochemical formation of a product MgxU3O8 (0<x<0.65). Galvanometric discharges in both non-aqueous and aqueous cells show the existence of two single phase regions at 0.20≤x≤0.27 and x≥0.40. These regions shifted to higher x-values when the discharge was performed at 100°C with DMF as the electrolyte solvent. A fcc phase (a ≈ 5.42 Å) was identified in the cathodic products when cells were discharged beyond x ≈ 0.65. This could be related to the known high temperature fluorite phase MgxU1−xOy. Equilibrium potential measurements were made to determine the integral free energy of magnesium insertion. Kinetic measurements showed magnesium diffusivity in MgxU3O8 to be three to four orders of magnitude less than that for lithium in the compound LixU3O8.  相似文献   

8.
Melt-spun ribbons with composition Sm2+Y(Co0.8Fe0.1Mn0.1)17BX (X=0–1.0 and Y=0–0.2) were fabricated with a wheel speed of 50 m/s, followed by annealing in the temperature range of 500–800°C for 2.5–60 min. Our results show that all the ribbons annealed up to 800°C are composed of a TbCu7-type phase as the main phase. The highest coercivity of 8.7 kOe is obtained in a Sm-rich sample with composition Sm2.2(Co0.8Fe0.1Mn0.1)17 annealed at 750°C for 5 min. It is found that these magnets show a very promising high-temperature performance – much better than those of typical sintered 2 : 17 magnets.  相似文献   

9.
The conductivity and elastic modulus of (CeO2)1 − x(YO1.5)x for x values of 0.10, 0.15, 0.20, 0.30, and 0.40 were investigated by experiments and molecular dynamics simulations. The calculated conductivity exhibited a maximum value at approximately 15 mol% Y2O3; this trend agreed with that of the experimental results. In order to clarify the reason for the occurrence of the maximum conductivity, the paths for the transfer of oxygen vacancies were counted. The numerical result revealed that as the content of Y2O3 dopant increases, the number of paths for the transfer of oxygen vacancies decreases, whereas the number of oxygen vacancies for conductivity increases. Thus, the trade-off between the increase in the number of vacancy sites and the decrease in the vacancy transfer was considered to be the reason for the maximum conductivity occurring at the Y2O3 dopant content of approximately 15 mol%. The calculated elastic modulus also exhibited a minimum value at approximately 20 mol% Y2O3, which also agreed with the experimental results. It was shown that the Y–O–Y bonding energy increased with the increasing content of Y2O3 dopant. Thus, the trade-off between the increase in the number of vacancy sites and that in the Y–O–Y bonding energy was considered to be the reason for the minimum elastic modulus occurring at the Y2O3 dopant content of approximately 20 mol%.  相似文献   

10.
In this paper, low temperature sintering of the Bi2(Zn1/3Nb2/3)2O7 (β-BZN) dielectric ceramics was studied with the use of BiFeO3 as a sintering aid. The effects of BiFeO3 contents and the sintering temperature on the phase structure, density and dielectric properties were investigated. The results showed that the sintering temperature could be decreased and the dielectric properties could be retained by the addition of BiFeO3. The structure of BiFeO3 doped β-BZN was still the monoclinic pyrochlore phase. The sintering temperature of BiFeO3 doped β-BZN ceramics was reduced from 1000 °C to 920 °C. In the case of 0.15 wt.% BiFeO3 addition, the β-BZN ceramics sintered at 920 °C exhibited good dielectric properties, which were listed as follows: εr = 79 and tan δ = 0.00086 at a frequency of 1 MHz. The obtained properties make this composition to be a good candidate for the LTCC application.  相似文献   

11.
CaREZrNbO7 (RE = La, Nd, Sm, Gd and Y) system changed from fluorite (F)-type to pyrochlore (P)-type structure when the ionic radius ratios, r(Ca2+–RE3+)av/r(Zr4+–Nb5+)av were larger than 1.34. Thus, the La, Nd, and Sm compounds have a cubic P-type structure and the Gd and Y ones have a defect F-type structure. The electrical conductivity was measured using complex-plane impedance analysis over a wide temperature (300–750 °C) and frequency (1 Hz–1 MHz) ranges. The conductivity relaxation phenomenon was observed in these compounds and the relaxation frequencies were found to show Arrhenius-type behavior and activation energies were in good agreement with those obtained from high temperature conductivity plots. These results support the idea that the relaxation process and the conductivity have the same origin. The ionic conductivity of CaREZrNbO7 (RE = La, Nd, Sm, Gd and Y) system showed the maximum at the phase boundary between the F-type and P-type phases. On the other hand, the activation energy for the conduction decreased in the F-type phase and increased in the P-type phase with increasing ionic radius ratio. Among the prepared compounds, CaGdZrNbO7 showed the highest ionic conductivity of 9.47 × 10− 3 S/cm at 750 °C which was about twice as high as that observed in Gd2Zr2O7 (4.2 × 10− 3 S/cm at 800 °C). The grain morphology observation by scanning electron microscope (SEM) showed well-sintered grains. AC impedance measurements in various atmospheres further indicated that they are predominantly oxide ion conductors at elevated temperatures (> 700 °C).  相似文献   

12.
The binary system CeO2–ZrO2 is thermally stable and has superior reduction–oxidation properties. It has been commonly used in the three-way catalytic converters for automobiles. In this work, an inorganic biomorphic porous CexZr1−xO2 fibrous network was successfully synthesized by using the egg shell membrane (ESM) as templates, and its morphology was a perfect replica of the original ESM. The synthesis involved a simple infiltration and calcination process. A fresh ESM was peeled from a chicken egg shell. It was soaked in a Ce(NO3)3 and Zr(NO3)4 mixture before it was calcined at 700 °C in ambient environment. The fibers in the biomorphic network had diameter ranged from 1 to 4 μm, and they were composed of CexZr1−xO2 nanocrystallites having an average grain size of 10 nm.  相似文献   

13.
林雪  关庆丰  刘洋  李海波 《中国物理 B》2010,19(10):107701-107701
We present an effective way in this paper to increase the density of lanthanum doped bismuth titanate ceramics, Bi4-xLaxTi3O12 (BLT), thereby significantly improving the performance of the BLT ceramics. Dense BLT ceramicses, Bi4-xLaxTi3O12 (x = 0.25, 0.5, 0.75, 1.0), are prepared by using nanocrystalline powders fabricated by a-gel method and high-pressure technique. The microstructures of the BLT ceramicses prepared separately by conventional-pressure and high-pressure techniques are investigated by using x-ray diffraction and transmission electron microscope. The influence of La-doping on the densification of bismuth titanate ceramics is investigated. The experimental results indicate that the phase compositions of all samples with various lanthanum dopings sintered at 900°C possess layer-structure of Bi4Ti3O12 . The green compacts are pressed under 2.5 GPa, 3.0 GPa, 3.5 GPa and 4.0 GPa, separately. It is found that the density of BLT ceramics is significantly increased due to the decreasing of porosity in the green compacts by high-pressure process.  相似文献   

14.
Single phase BaM (BaFe12O19) ferrites are prepared by using sol–gel method. The preparing conditions of samples are investigated in detail, such as acid/nitrate ratio, the value of pH and annealing temperature. The best conditions on preparing BaFe12O19, which can be obtained on a Fe/Ba ratio of 12, the citric acid contents R = 3, the starting pH of solution is 9, and annealing temperature 950 °C. The thermal decomposition behavior of the dried gel was examined by TG–DSC, the structure and properties of powders were measured respectively by XRD techniques. The magnetic properties of barium ferrites are emphatically researched about the changing crystallite size and annealing temperature by the vibrating sample magnetometer (VSM). Magnetic measurement shows that the barium ferrite samples annealed at 1000 °C has the maximal coercive field of 5691.91 Oe corresponding to the maximal remnant magnetization of 35.60 emu/g and the sample synthesized at 1000 °C has the maximal saturation magnetization of 60.75 emu/g.  相似文献   

15.
Ba(Ti1−x,Nix)O3 thin films were prepared on fused quartz substrates by a sol–gel process. X-ray diffraction and Raman scattering measurements showed that the films are of pseudo-cubic perovskite structure with random orientation and the change of lattice constant caused by Ni-doping with different concentrations is very small. Optical transmittance spectra indicated that Ni-doping has an obvious effect on the energy band structure. The energy gap of Ba(Ti1−x,Nix)O3 decreased linearly with the increase of Ni concentration. It indicates that the adjusting of band gap can be achieved by controlling the Ni-doping content accurately in Ba(Ti1−x,Nix)O3 thin films. This has potential application in devices based on ferroelectric thin films.  相似文献   

16.
Ba2(In1 − xMx)2O5 − y / 2(OH)y‪□1 − y / 2 (y ≤ 2; M = Sc3+ 0 ≤ x < 0.5 and M = Y3+ 0 ≤ x < 0.35) compounds were prepared by reacting Ba2(In1 − xMx)2O5‪ phases with water vapor. This reaction is reversible. Analyses of the hydration process by TG and XRD studies show that the thermal stability of hydrated phases increases when x increases and that the incorporation of water is not a single-phase reaction inducing either a crystal system or space group modification. Fully hydrated (y = 2) and dehydrated (y = 0) samples have been stabilized at room temperature and characterized for all compositions. In wet air, all phases show a proton contribution to the total conductivity at temperatures between 350 and 600 °C. At a given temperature, proton conductivity increases with the substitution ratio and reaches at 350 °C, 5.4 10− 3 S cm− 1 for Ba2(In0.65Sc0.35)2O4.20.2(OH)1.6.  相似文献   

17.
Bi4−xMxV2O11 (M = La, Gd) was prepared by solid state reactions. The amount of La and Gd in the (Bi4−xMxV2O11) was varied in the range of (0 x 0.4). The addition of La and Gd to Bi4V2O11 electrolyte was found to stabilize the β crystalline phase for x 0.3. In addition, the phase transition corresponding β- to γ-phases are evident in the ionic conductivity plots as well as in XRD, DSC profiles of x 0.3 samples. The highest ionic conductivity was observed in Bi3.9La0.1V2O11 and Bi3.8Gd0.2V2O11 samples in the range of 10−3–10−4 S/cm for 700–500 °C. These results were supported by impedance spectroscopy, X-ray diffraction (XRD) and differential scanning calorimetry (DSC).  相似文献   

18.
We have investigated the relation among ρT characteristics, superconductivity, annealing conditions and the crystallinity of polycrystalline (In2O3)1−x–(ZnO)x films. We annealed as-grown amorphous films in air by changing annealing temperature and time. It is found that the films annealed at 200 °C or 300 °C for a time over 0.5 h shows the superconductivity. Transition temperature Tc and the carrier density n are Tc < 3.3 K and n ≈ 1025–1026 m−3, respectively. Investigations for films with x = 0.01 annealed at 200 °C have revealed that the Tc, n and crystallinity depend systematically on annealing time. Further, we consider that there is a suitable annealing time for sharp resistive transition because the transition width becomes wider with longer annealing times. We studied the upper critical magnetic field Hc2(T) for the film with different annealing time. From the slope of dHc2/dT for all films, we have obtained the resistivity ρ dependence of the coherence length ξ(0) at T = 0 K.  相似文献   

19.
Y3−xMg2AlSi2O12:Cex3+ (x=0.015, 0.03 and 0.06) phosphors possessing garnet crystal structure were synthesized by the sol–gel combustion technique. The samples were characterized by application of powder X-ray diffraction (XRD), photoluminescence (PL) spectroscopy, thermal quenching (TQ) and scanning electron microscopy (SEM). Moreover, luminous efficacies (LE), color points and quantum efficiencies (QE) were calculated. Optical properties were studied as a function of Ce3+ concentration and annealing temperature. XRD analysis revealed that sintering of polycrystalline Y3Mg2AlSi2O12:Ce3+ powders at 1550 °C results in nearly single-phase garnet materials. Phosphors showed broad emission band in the range of 500–750 nm and had the maximum intensity at 600 nm, which results in strongly red-shifted phosphors compared with conventional YAG:Ce phosphors emitting at 560 nm. However, strong concentration quenching has also been observed, probably due to increased Stokes shift.  相似文献   

20.
Effect of the deposition temperature (200 and 500 °C) and composition of SmxCe1−xO2−x/2 (x = 0, 10.9–15.9 mol%) thin films prepared by electron beam physical vapor deposition (EB-PVD) and Ar+ ion beam assisted deposition (IBAD) combined with EB-PVD on structural characteristics and morphology/microstructure was investigated. The X-ray photoelectron spectroscopy (XPS) of the surface and electron probe microanalysis (EPMA) of the bulk of the film revealed the dominant occurrence of Ce4+ oxidation state, suggesting the presence of CeO2 phase, which was confirmed by X-ray diffraction (XRD). The Ce3+ oxidation states corresponding to Ce2O3 phase were in minority. The XRD and scanning electron microscopy (SEM) showed the polycrystalline columnar structure and a rooftop morphology of the surface. Effects of the preparation conditions (temperature, composition, IBAD) on the lattice parameter, grain size, perfection of the columnar growth and its impact on the surface morphology are analyzed and discussed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号