首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
High-magnetic-field X-ray absorption spectra (XAS) and its X-ray magnetic circular dichroism (XMCD) at the Yb L2, 3 edges of YbInCu4 are calculated around the field-induced valence transition at about 30 T. The calculations are made by using a new theoretical framework with an extended single impurity Anderson model (SIAM) developed recently by the present author. Two parameters in SIAM, the 4f level and the hybridization strength, are taken as different values in low- and high-magnetic-field phases of the field-induced valence transition. The calculated results are compared with recent experimental data measured by Matsuda et al. by utilizing a miniature pulsed magnet up to 40 T. The field-dependence of the calculated XMCD spectra is explained in detail on the basis of the field-dependence of the Yb 4f wavefunctions in the ground state. Some possibilities are discussed on the negative XMCD signal observed experimentally at the L2 edge.  相似文献   

2.
We presented the X-ray magnetic circular dichroism (XMCD) and X-ray absorption spectroscopy (XAS) studies of heavy fermion compound CeAl2 bulk and 8 nm nanoparticles, performed at the Ce M4,5- and L3- absorption edges. XMCD and XAS revealed that Ce in bulk CeAl2 exhibits localized 4f1 character with magnetic ordering. The Ce in nanoparticles, on the other hand, shows a small amount delocalized 4f0 character with non-magnetic Kondo behavior. By applying general sum rules, an estimation of the orbital and spin contribution to those Ce 4f moments can be obtained. Our results also demonstrated that the magnetic behavior in CeAl2 is very sensitive to the degree of localization of the 4f electrons.  相似文献   

3.
A theoretical study is presented, with an extended single impurity Anderson model, for the crystal field effect on the X-ray magnetic circular dichroism (XMCD) spectra at L2,3 edges of mixed-valence Ce and Yb compounds in high magnetic fields. The crystal field acting on the 4f electrons is assumed to have cubic symmetry. Due to the competition among the effects of crystal field, mixed valency, and external magnetic field, the magnetic-field-dependence of XMCD spectra exhibits a variety of features; for instance, the branching ratio, R(L2/L3), of L2 and L3 XMCD intensities of Ce compounds can take R(L2/L3) > 1.0 and <1.0, and that of Yb compounds can take R(L2/L3) > 0 and <0. It is shown that the magnetic-field-dependence of the total XMCD intensity I(L2 + L3) is proportional to the magnetization curve, but that of R(L2/L3) gives more precise information on the ground state wavefunction in magnetic fields. A new and useful method to correlate the XMCD spectra, the 4f magnetization and the ground state wavefunction is proposed and used to discuss the relation between I(L2 + L3) and the magnetization curve and that between R(L2/L3) and the ground state wavefunction.  相似文献   

4.
Co and Mn 2p core absorption (XAS) and X-ray magnetic circular dichroism (XMCD) spectra have been measured for the ferromagnetic ternary alloy Co2MnGe. The observed Co 2p XAS spectrum can be understood on the basis of the unoccupied Co 3d partial density of states, whereas the overall features of the Mn 2p XAS and XMCD spectra have been partly reproduced by the Mn 2p53d6 final state multiplets. We have found that the orbital polarization of the Co 3d and even the Mn 3d states are recognizable, which suggests that a spin-orbit coupling should be taken into account in the energy band structure in order to reproduce the half metallic nature of this alloy.  相似文献   

5.
X-ray absorption spectroscopy (XAS) and X-ray magnetic circular dichroism (XMCD) under pressure are probes of local order and microscopic magnetic properties. XMCD is a selective probe that has access to a large variety of elements. The dispersive extended X-ray absorption fine structure (EXAFS) station at SOLEIL (ODE beam line) provides the possibility to perform numerous pressure XAS and XMCD experiments with an excellent statistic. The main advantages of dispersive XAFS are the focusing optics, the short acquisition time (few μs) and great stability during the measurements due to the absence of any mechanical movement. These advantages allow the study of small samples, 70 μm at SOLEIL, which is mandatory in the case of high-pressure studies. We present the new ODE beam line at SOLEIL and its first high-pressure XMCD results.  相似文献   

6.
Theoretical interpretations of X-ray magnetic circular dichroism (XMCD) at rare-earth (called R hereafter) L23 absorption edges are reviewed using differing models, depending on the material under investigation. In the first chapter, we present an overview of recent developments for XMCD in XAS with a few general remarks, especially at R atom absorption edges. In Section 2, we first describe basic mechanism of XMCD at L23 edges of R systems, and then we essentially discuss two examples of XMCD spectra in: (i) R2Fe14B metallic compounds, with the help of a cluster model, and (ii) RFe2 Laves-phase compounds, using a tight-binding approximation for R 5d and Fe 3d conducting states. A good agreement between theory and experiment for R2Fe14B suggests that a cluster model provides a valuable method to quantitatively calculate XMCD spectra of R systems, even with quite complicated atomic arrangements. For RFe2 systems the XMCD spectral shape, especially for the L2 edge of heavy R elements, is more complicated than those of R2Fe14B systems, and this is explained by the competition of some different XMCD mechanisms. In Section 3, we focus on special series of Ce systems, related to XAS and XMCD studies at the Ce L23 edges. Two clearly differing cases are interpreted: (i) A well localized 4f1 system, i.e. CeRu2Ge2; (ii) A less localized 4f1 system, i.e. CeFe2, with a 3d partner. Then, from a more experimental point of view, we investigate the influence of substitution on the low temperature properties of CePd3 compounds, i.e. Ce(Pd1-xMnx)3Ce(Pd1-xMnx)3 alloys where x   is about 0.03, giving rise to (CePd3)8Mn(CePd3)8Mn ordered structure. We give another example: Ce(Pd1-xNix)3Ce(Pd1-xNix)3 alloys with x taken up to about 0.25. Also the Ce L23 XMCD signal measured in pure CePd3 demonstrates that in the Ce based dense Kondo materials, only the 4f1 channel yields a magnetic response.  相似文献   

7.
The temperature dependences of the X-ray absorption spectra (XAS) and of the spectra of X-ray magnetic circular dichroism (XMCD) are measured near the L 3,2 absorption edges of Co and Fe in ludwigite Co2FeBO5 single crystals. The antiparallel orientation of the magnetic moments of cobalt and iron is demonstrated. The coercive fields related to cobalt and iron ions are determined. The orbital (m l ) and (m s ) spin contributions to the total magnetic moments of cobalt and iron ions are identified. The ratios and relative directions of m l and m s are found.  相似文献   

8.
We have measured and analyzed Co K-edge X-ray absorption near edge structure (XANES) and X-ray magnetic circular dichroism (XMCD) near edge spectra in crystalline and amorphous GdCo2 alloys. We have used a semi-relativistic full multiple scattering approach to the analyses of the XMCD spectra. A general formula is obtained which is applicable to randomly oriented systems in space. Useful information is obtained on both the electronic and geometric structure around a Co atom. The difference in XANES and XMCD spectra between crystalline and amorphous GdCo2 is well explained by models referring to the anomalous X-ray scattering result, where three Gd atoms in the second shell are removed away. The calculated XANES are not so sensitive to the electronic structure, whereas the calculated XMCD spectra are rather sensitive to the spin polarization on Co atoms. The result shows that the spin polarization on Co atoms in GdCo2 alloys is smaller than that in Co metals.  相似文献   

9.
The ternary germanide Ce3Ni2Ge7 has been studied by means of neutron powder diffraction and Ce LIII X-ray absorption (XAS). This compound which orders antiferromagnetically below TN=7.2(2) K, crystallizes in the orthorhombic (Cmmm space group) La3Co2Sn7-type structure where Ce atoms occupying two inequivalent crystallographic sites: Ce1 at 2d site and Ce2 at 4i site. Below TN, the antiferromagnetic structure of Ce3Ni2Ge7 is collinear but only the Ce2 atoms carry a magnetic moment (1.98(2) μB at 1.4 K). The absence of ordered magnetic moment on Ce1 atoms can be correlated to the average valence v=3.03(1), determined by X-ray absorption spectroscopy, suggesting an intermediate valence state of cerium in the 2d site.  相似文献   

10.
We discuss the angular dependent K-edge X-ray magnetic circular dichroism (XMCD) spectra based on the non-relativistic Green’s function expansion of the relativistic 4×4 Green’s function developed by Gesztesy et al. [Ann. Inst. Henri Poincaré 40 (1984) 159]. For the core functions we use the Dirac equation solutions whereas the relativistic effects for photoelectrons are automatically taken into account in the Gesztesy expansion. Analyses of the angular anisotropy provides us useful information on local symmetry violation around X-ray absorbing atoms even though we include relativistic effects. We explicitly show three different types of the symmetry which give rise to the suppression of the sin β-dependence in XMCD spectra. We also present explicit formulas of XMCD for randomly oriented and spatially fixed systems. Discussion on Debye–Waller factors is given in the present theoretical framework. Some illustrative calculations are also shown to understand the relativistic effects on the XMCD. The results are given for the Gd L1-edge and Fe K-edge XMCD.  相似文献   

11.
We resolved a recent controversy on the structure of the Ce L(3) x-ray absorption spectra (XAS) of CeFe(2); i.e., which of the single impurity Anderson model (SIAM) and the first-principles band calculations based on the density-functional theory (DFT) describes more appropriately the Ce 4f states and their contribution to the Ce L(3) XAS? For this purpose, we examined the core-hole effect in Ce L(3) XAS as an application of our new method taking advantage of resonant x-ray emission spectroscopy. Our result clearly shows that the Ce L(3) XAS structure is caused by the mixed valence 4f character revealed by the core-hole potential effect as indicated by SIAM, but denies the possibility that the L(3) XAS structure is caused by the 5d band structure with a very small core-hole effect as predicted by band calculations based on DFT.  相似文献   

12.
13.
李红红  王劼  郭玉献  王峰 《物理学报》2006,55(5):2633-2638
在4个方面研究了实验数据的预处理和应用加和定则中的问题.1)外磁场对样品电流法测量的吸收谱强度的影响.发现外磁场H<200×10-4T时,信号强度正比于H;当H>200×10-4T时,尽管外磁场继续增加,但信号强度基本保持不变.2)不同方向的电磁铁剩磁会导致吸收谱的分离.这种分离与入射光的偏振态和样品的磁性无关,可以通过乘以一个常数很好地消除这种分离.3)通过XPSPEAK 4.1对实验数据拟合,写出了吸收谱的解析函数.利用解析函数的积分值,建立一种相对“客观"的标准,判断在一定的实验条件下,不同的数值积分方法的准确性.4)以误差函数作为吸收谱的背景函数,建立了一套完整的X射线磁性圆二色的数据处理方法.最后用Bode积分法计算出20nm厚Co膜的轨道和自旋磁矩分别为0.141μB和1.314μB. 关键词: X射线磁性圆二色 加和定则 台阶函数 吸收谱拟合  相似文献   

14.
We investigate the magnetic properties of Ho‐doped Bi2Te3 thin films grown by molecular beam epitaxy. Analysis of the polarized X‐ray absorption spectra at the Ho M5 absorption edge gives an effective 4f magnetic moment which is ~45% of the Hund's rule ground state value. X‐ray magnetic circular dichroism (XMCD) shows no significant anisotropy, which suggests that the reduced spin moment is not due to the crystal field effects, but rather the presence of non‐magnetic or antiferromagnetic Ho sites. Extrapolating the temperature dependence of the XMCD measured in total electron yield and fluorescence yield mode in a field of 7 T gives a Curie–Weiss temperature of ?CW ≈ –30 K, which suggests antiferromagnetic ordering, in contrast to the paramagnetic behavior observed with SQUID magnetometry. From the anomaly of the XMCD signal at low temperatures, a Néel temperature TN between 10 K and 25 K is estimated. (© 2016 WILEY‐VCH Verlag GmbH &Co. KGaA, Weinheim)  相似文献   

15.
A review is presented of the recent development in theoretical studies of X-ray photoemission spectra (XPS) and X-ray absorption spectra (XAS) for rare-earth sesquioxides (R2O3) and rare-earth dioxides (RO2). From the analysis of 3d XPS for R2O3 (R = La, Ce,..., Yb) and RO2 (R = Ce, Pr, Tb) with the impurity Anderson model (without the multiplet coupling effect), we estimate the strength of the covalency hybridization between rare-earth 4f and oxygen 2p states, the charge transfer energy and other physical quantities, and discuss their systematic variation with the change in rare-earth elements. Two possible mechanisms for the splitting of the 3d XPS are pointed out for R2O3. One is the initial-state hybridization for R = La, Ce, Pr and Nd; the other is the final-state hybridization for R = Eu and Yb. For RO2 (R = Ce, Pr, Tb), both of the initial- and final-state hybridizations are essential in explaining the 3d XPS spectra. Then, we study the effect of the intraatomic multiplet coupling on 3d and 4d XPS for La2O3, Ce2O3, Pr2O3, Nd2O3, Yb2O3 and CeO2. The multiplet coupling effect is not very important for the 3d XPS, causing only an additional spectral broadening and some minor spectral structures. In the analysis of 4d XPS, however, the interplay between the multiplet coupling and the hybridization plays an essential role. Finally, we study the multiplet structure in 3d and 4d XAS for CeO2 and PrO2. It is shown that the original atomic multiplet structure in these XAS is strongly modified by the interatomic hybridization effect, and the experimental multiplet structure is explained consistently with the analysis of 3d and 4d XPS, by the mixed-valence ground state with strong covalency hybridization.  相似文献   

16.
X-ray magnetic circular dichroism (XMCD) was used to probe the existence of induced magnetic moments in yttrium iron garnet (YIG) films in which yttrium is partly substituted with lanthanum, lutetium or bismuth. Spin polarization of the 4d states of yttrium and of the 5d states of lanthanum or lutetium was clearly demonstrated. Angular momentum resolved d-DOS of yttrium and lanthanun was shown to be split by the crystal field, the two resolved substructures having opposite magnetic polarization. The existence of a weak orbital moment involving the 6p states of bismuth was definitely established with the detection of a small XMCD signal at the Bi M1-edge. Difference spectra also enhanced the visibility of subtle changes in the Fe K-edge XMCD spectra of YIG and {Y, Bi}IG films. Weak natural X-ray linear dichroism signatures were systematically observed with all iron garnet films and with a bulk YIG single crystal cut parallel to the (1 1 1) plane: this proved that, at room temperature, the crystal cannot satisfy all requirements of perfect cubic symmetry (space group: ), crystal distortions preserving at best trigonal symmetry ( or R3m). For the first time, a very weak X-ray magnetic linear dichroism (XMLD) was also measured in the iron K-edge pre-peak of YIG and revealed the presence of a tiny electric quadrupole moment in the ground-state charge distribution of iron atoms. Band-structure calculations carried out with fully relativistic LMTO-LSDA methods support our interpretation that ferrimagnetically coupled spins at the iron sites induce a spin polarization of the yttrium d-DOS and reproduce the observed crystal field splitting of the XMCD signal.  相似文献   

17.
X-ray Magnetic Circular Dichroism (XMCD) technique was used to investigate local magnetic properties of microcrystalline Nd10.4Zr4.0Fe79.2B6.4 samples, oriented along either easy or hard magnetization direction. The Nd L 2,3 and Fe K edge XMCD spectra were measured at room temperature under a magnetic field of T. A very strong dependence of XMCD spectra on the sample orientation has been observed at the NdL 2,3-edges, whereas the Fe K-edge XMCD spectra are found to be practically isotropic. This result indicates that magnetic anisotropy of NdFeB-based alloys originates from the Nd sublattice. In addition, element selective magnetization curves have been recorded by measuring the intensity of XMCD signals as a function of an applied magnetic field up to T. To find a correlation between local and macroscopic magnetic properties of studied samples we compared these data with magnetization curves, measured by vibrating sample magnetometer up to T. Results are important for understanding the origin of high-coercivity state in NdFeB-based intermetallic compounds.  相似文献   

18.
We combine X-ray magnetic circular dichroism (XMCD) and photoelectron emission microscopy to obtain locally resolved magnetic information on a microscopic scale. Scanning the photon energy across elemental absorption edges and recording microscopic images of the local secondary electron intensity for both photon helicities at each photon energy step allows to analyze local XMCD spectra at any position of the imaged area of the sample. With the help of magnetic sum-rules local quantitative information about magnetic moments can be extracted from such microspectroscopic measurements. The full power of XMCD as a spectroscopic tool is so maintained, while microscopic spatial resolution is added.  相似文献   

19.
We report structural, magnetic and electronic structure study of Mn doped TiO2 thin films grown using pulsed laser deposition method. The films were characterized using X-ray diffraction (XRD), dc magnetization, X-ray magnetic circular dichroism (XMCD) and near edge X-ray absorption fine structure (NEXAFS) spectroscopy measurements. XRD results indicate that films exhibit single phase nature with rutile structure and exclude the secondary phase related to Mn metal cluster or any oxide phase of Mn. Magnetization studies reveal that both the films (3% and 5% Mn doped TiO2) exhibit room temperature ferromagnetism and saturation magnetization increases with increase in concentration of Mn doping. The spectral features of XMCD at Mn L3,2 edge show that Mn2+ ions contribute to the ferromagnetism. NEXAFS spectra measured at O K edge show a strong hybridization between Mn, Ti 3d and O 2p orbitals. NEXAFS spectra measured at Mn and Ti L3,2 edge show that Mn exist in +2 valence state, whereas, Ti is in +4 state in Mn doped TiO2 films.  相似文献   

20.
The Ni((C2H5O)2PS2)2 complex has been investigated using the X-ray absorption near edge structure (XANES) analysis. Nickel K-edge XANES spectra of the complex have been measured and theoretical calculations of the spectra have been carried out using the finite difference method; the calculation of molecular potential has been carried out both in the full potential and in the muffin-tin approximation. The analysis of results obtained has shown that a good agreement between theoretical and experimental spectra in the low-energy region is achieved only in the case of full potential calculations (beyond the muffin-tin approximation for the potential shape).  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号