首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The one-phase reduction of RuCl3 with lithium triethylborohydride as a reductant in tetrahydrofuran in the presence of 1-octanethiol, 1-octadecanethiol, 1,1'-binaphthalene-2,2'-dithiol, or oligoethyleneoxythiol gave organic solvent- and water-soluble thiol-stabilized ruthenium nanoparticles. The oligoethyleneoxythiol-stabilized ruthenium nanoparticles were soluble in both water and organic solvents. The ruthenium nanoparticles were stable in the solid state and did not aggregate in solution. Transmission electron microscope images of the ruthenium nanoparticles reveal small dispersed particles with a narrow size distribution. The ligand-exchange reaction of octadecanethiol-stabilized ruthenium nanoparticles (2.0 nm) with phenothiazine-linked decanethiol afforded redox-active phenothiazine-functionalized ruthenium nanoparticles (1.9 nm) that showed a reversible redox peak at +0.51 V (vs Ag/0.1 M AgNO3) in the cyclic voltammogram.  相似文献   

2.
A route to the preparation of poly(N-vinyl-2-pyrrolidone) (PVP)-stabilized ruthenium colloids by refluxing ruthenium(III) chloride in low boiling point alcohols was developed. Deep purple colloids with shuttle-like ruthenium particles were also synthesized. XPS measurement verified the nanoparticles were in the metallic state. The morphology of metal nanoparticles was characterized by UV-visible absorption spectrophotometry, TEM and XRD.  相似文献   

3.
Ruthenium nanoparticles supported on titania are over three times more active than conventional ruthenium on carbon for the hydrogenation of lactic acid. This superior catalytic activity can be due to a combined action of small ruthenium nanoparticles and the titania support.  相似文献   

4.
Positively charged ruthenium nanoparticles were prepared by NaBH(4) reduction at room temperature and at pH values lower than 4.9. The ruthenium nanoparticles were characterized by zeta potential measurement, TEM, XPS, and XRD. Particles with a mean diameter of 1.8 nm and a standard deviation of 0.40 nm could be obtained under the experimental conditions. The surface charge on the particles is believed to originate from hydrated proton adsorption. The positively charged ruthenium nanoparticles could be used as the starting material for further functionalization by PVP, ethylenediamine, and dodecylamine.  相似文献   

5.
Ionic liquids are a stabilizing medium for the in situ synthesis of ruthenium nanoparticles. Herein we show that the addition of molecular polar solutes to the ionic liquid, even in low concentrations, eliminates the role of the ionic liquid 3D structure in controlling the size of ruthenium nanoparticles, and can induce their aggregation. We have performed the synthesis of ruthenium nanoparticles by decomposition of [Ru(COD)(COT)] in 1-butyl-3-methylimidazolium bis(trifluoromethylsulfonyl)imide, [C(1)C(4)Im][NTf(2)], under H(2) in the presence of varying amounts of water or 1-octylamine. For water added during the synthesis of metallic nanoparticles, a decrease of the solubility in the ionic liquid was observed, showed by nanoparticles located at the interface between aqueous and ionic phases. When 1-octylamine is present during the synthesis, stable nanoparticles of a constant size are obtained. When 1-octylamine is added after the synthesis, aggregation of the ruthenium nanoparticles is observed. In order to explain these phenomena, we have explored the molecular interactions between the different species using (13)C-NMR and DOSY (Diffusional Order Spectroscopy) experiments, mixing calorimetry, surface tension measurements and molecular simulations. We conclude that the behaviour of the ruthenium nanoparticles in [C(1)C(4)Im][NTf(2)] in the presence of 1-octylamine depends on the interaction between the ligand and the nanoparticles in terms of the energetics but also of the structural arrangement of the amine at the nanoparticle's surface.  相似文献   

6.
Well dispersed ruthenium(0) nanoparticles, stabilized in the ionic liquid agent, trihexyltetradecylphosphonium dodecylbenzenesulfonate, have been successfully prepared via a reduction reaction of the precursor [CpRuCp*RuCp*]PF6 (Cp* = C5Me5). The ruthenium(0) nanoparticles were shown to catalyze the isotope exchange reaction between 10B enriched diborane and natural abundant B10H14 to produce highly 10B enriched (approximately 90%) decaborane(14) products. The ruthenium(0) nanoparticles were characterized by TEM, XRD, and XPS. The 10B enriched decaborane(14) has been analyzed by Raman spectroscopy, NMR, and high-resolution MS.  相似文献   

7.
Tethered and untethered ruthenium half-sandwich complexes were synthesized and characterized spectroscopically. X-ray crystallographic analysis of three untethered and two tethered Ru N-heterocyclic carbene (NHC) complexes were also carried out. These RuNHC complexes catalyze transfer hydrogenation of aromatic ketones in 2-propanol under reflux, optimally in the presence of (25 mol %) KOH. Under these conditions, the formation of 2–3 nm-sized Ru0 nanoparticles was detected by TEM measurements. A solid-state NMR investigation of the nanoparticles suggested that the NHC ligands were bound to the surface of the Ru nanoparticles (NPs). This base-promoted route to NHC-stabilized ruthenium nanoparticles directly from arene-tethered ruthenium–NHC complexes and from untethered ruthenium–NHC complexes is more convenient than previously known routes to NHC-stabilized Ru nanocatalysts. Similar catalytically active RuNPs were also generated from the reaction of a mixture of [RuCl2(p-cymene)]2 and the NHC precursor with KOH in isopropanol under reflux. The transfer hydrogenation catalyzed by these NHC-stabilized RuNPs possess a high turnover number. The catalytic efficiency was significantly reduced if nanoparticles were exposed to air or allowed to aggregate and precipitate by cooling the reaction mixtures during the reaction.  相似文献   

8.
A high-temperature and high-pressure flow-reactor system was applied to the synthesis of monometallic ruthenium (Ru) nanoparticles and platinum/ruthenium (Pt/Ru) bimetallic nanoparticles using the thermal reduction of ruthenium ion (Ru(III)) and the mixture of platinum (Pt(IV)) and ruthenium ions in water and ethanol mixture in the presence of poly(N-vinyl-2-pyrrolidone). Monometallic Ru nanoparticles with an average diameter of ca. 2 nm were synthesized above 200 degrees C at 30 MPa. The monometallic Ru nanoparticles tended to make large aggregates in colloidal dispersions. By the reduction of the mixture solution of Pt(IV) and Ru(III) in water and ethanol above 200 degrees C at 30 MPa, Pt/Ru bimetallic nanoparticles with an average diameter of ca. 2.5 nm were synthesized with relatively small size distribution. The EXAFS spectra for the Pt/Ru bimetallic particles indicated that the particle possesses metallic bonds between Pt and Ru atoms in contrast to the case of the nanoparticles produced by thermal reduction under ambient pressure at 100 degrees C [M. Harada, N. Toshima, K. Yoshida, S. Isoda, J. Colloid Interface Sci. 283 (2005) 64], and that the Pt/Ru bimetallic particle has a Pt-core/Ru-shell structure.  相似文献   

9.
A nanoscale ruthenium/gold bimetallic cluster of clusters has been used as a molecular precursor to produce pure ruthenium nanoparticles (seeds) as catalysts for the growth of carbon nanohorns (CNHs).  相似文献   

10.
Herein we report the discovery of an in situ generated, highly active nanocatalyst for the room temperature dehydrogenation of dimethylamine-borane in water. The new catalyst system consisting of ruthenium(0) nanoparticles stabilized by the hydrogenphosphate anion can readily and reproducibly be formed under in situ conditions from the dimethylamine-borane reduction of a ruthenium(III) precatalyst in tetrabutylammonium dihydrogenphosphate solution at 25 ± 0.1 °C. These new water dispersible ruthenium nanoparticles were characterized by using a combination of advanced analytical techniques. The results show the formation of well-dispersed ruthenium(0) nanoparticles of 2.9 ± 0.9 nm size stabilized by the hydrogenphosphate anion in aqueous solution. The resulting ruthenium(0) nanoparticles act as a highly active catalyst in the generation of 3.0 equiv. of H(2) from the hydrolytic dehydrogenation of dimethylamine-borane with an initial TOF value of 500 h(-1) at 25 ± 0.1 °C. Moreover, they provide exceptional catalytic lifetime (TTO = 11,600) in the same reaction at room temperature. The work reported here also includes the following results; (i) monitoring the formation kinetics of the in situ generated ruthenium nanoparticles, by using the hydrogen generation from the hydrolytic dehydrogenation of dimethylamine-borane as a catalytic reporter reaction, shows that sigmoidal kinetics of catalyst formation and concomitant dehydrogenation fits well to the two-step, slow nucleation and then autocatalytic surface growth mechanism, A → B (rate constant k(1)) and A + B → 2B (rate constant k(2)), in which A is RuCl(3)·3H(2)O and B is the growing, catalytically active Ru(0)(n) nanoclusters. (ii) Hg(0) poisoning coupled with activity measurements after solution infiltration demonstrates that the in situ generated ruthenium(0) nanoparticles act as a kinetically competent heterogeneous catalyst in hydrogen generation from the hydrolytic dehydrogenation of dimethylamine-borane. (iii) A compilation of kinetic data depending on the temperature and catalyst concentration is used to determine the dependency of reaction rate on catalyst concentration and the activation energy of the reaction, respectively.  相似文献   

11.
Stable ruthenium nanoparticles were prepared by the self-assembly of 1-dodecyne onto the "bare" Ru colloid surface. The formation of a Ru-vinylidene (Ru═C═CH-R) interfacial bonding linkage was confirmed by the specific reactivity of the nanoparticles with imine derivatives to form a heterocyclic complex at the metal-ligand interface, as manifested in (1)H and (13)C NMR, photoluminescence, and electrochemical measurements in which a ferrocenyl imine was used as the labeling probe. Notably, the resulting nanoparticles could also undergo olefin metathesis reactions with vinyl-terminated molecules, as exemplified by the functionalization of the nanoparticles with 1-vinylpyrene. In sharp contrast, no reactvity was observed with 1-dodecynide-stabilized ruthenium nanoparticles with either imine or vinyl derivatives, indicating that these (deprotonated) nanoparticles were stabilized instead by the formation of a Ru-C≡ dπ bond at the metal-ligand interface.  相似文献   

12.
Ruthenium-catalyzed Heck olefination and Suzuki cross coupling reactions have been developed. When starting with a ruthenium complex [RuCl(2)(p-cymene)](2) as a homogeneous catalyst precursor, induction periods were observed and ruthenium colloids of zero oxidation state were generated under catalytic conditions. Isolated ruthenium colloids carried out the olefination, implying that active catalytic species are ruthenium nanoclusters. To support this hypothesis, ruthenium nanoparticles stabilized with dodecylamine were independently prepared via a hydride reduction procedure, and their catalytic activity was subsequently examined. Olefination of iodobenzene with ethyl acrylate was efficiently catalyzed by the ruthenium nanoparticles under the same conditions, which could be also reused for the next runs. In poisoning experiments, the conversion of the olefination was completely inhibited in the presence of mercury, thus supporting our assumption on the nature of catalytic species. No residual ruthenium was detected from the filtrate at the end of the reaction. On the basis of the postulation, a heterogeneous catalyst system of ruthenium supported on alumina was consequently developed for the Heck olefination and Suzuki cross coupling reactions for the first time. It turned out that substrate scope and selectivity were significantly improved with the external ligand-free catalyst even under milder reaction conditions when compared to results with the homogeneous precatalyst. It was also observed that the immobilized ruthenium catalyst was recovered and reused up to several runs with consistent efficiency. Especially in the Suzuki couplings, the reactions could be efficiently carried out with as low as 1 mol % of the supported catalyst over a wide range of substrates and were scaled up to a few grams without any practical problems, giving coupled products with high purity by a simple workup procedure.  相似文献   

13.
The potential implementation of ruthenium‐based catalysts in polyvinyl chloride production via acetylene hydrochlorination is hindered by their inferior activity and stability compared to gold‐based systems, despite their 4‐fold lower price. Combining in‐depth characterization and kinetic analysis we reveal the superior activity of ruthenium nanoparticles with an optimal size of 1.5 nm hosted on nitrogen‐doped carbon (NC) and identify their deactivation modes: 1) nanoparticle redispersion into inactive single atoms and 2) coke formation at the metal sites. Tuning the density of the NC carrier enables a catalytic encapsulation of the ruthenium nanoparticles into single layer graphene shells at 1073 K that prevent the undesired metal redispersion. Finally, we show that feeding O2 during acetylene hydrochlorination limits coke formation over the nanodesigned ruthenium catalyst, while the graphene layer is preserved, resulting in a stability increase of 20 times, thus rivalling the performance of gold‐based systems.  相似文献   

14.
Ruthenium fulleride nanospheres were produced and decorated with small (<1.5 nm) ruthenium nanoparticles. These materials, which present a significant charge transfer from ruthenium to the electron acceptor C60 fullerene, were tested in the hydrogenation of cinnamaldehyde. In alcoholic solvents, very large amounts (≈90%) of acetals were formed, pointing out the high acidity of the Ru sites. The addition of a weak base and the use of methanol as a solvent allow to reach high activity and selectivity toward cinnamyl alcohol, whereas the use of an aprotic and apolar solvent decreases the activity and yields mainly hydrocinnamaldehyde. Density functional theory calculations show that this selectivity shift is not correlated to a specific precoordination of cinnamaldehyde on the ruthenium nanoparticles.  相似文献   

15.
Monodisperse and solvent adaptable gold nanoparticles stabilized by rigid and fully conjugated modified neocuproinium and terpyridinium salts have been characterized and further used as nanobuilding blocks for the synthesis of gold nanoparticles functionalized by polypyridyl ruthenium complexes.  相似文献   

16.
Carbon-aerogel-supported ruthenium nanoparticles were synthesized by impregnating carbon aerogels with Ru(acac)3 or Ru(cod)(tmhd)2 from supercritical carbon dioxide (scCO2) solutions, followed by thermal reduction of these precursors. Two different carbon aerogels with pore diameters of 4 and 21 nm were synthesized. The kinetics and the thermodynamics of impregnation of carbon aerogels with the ruthenium coordination complexes were studied. The approach-to-equilibrium data indicated very fast adsorption, and the adsorption isotherms were found to follow the Langmuir model. The impregnated carbon aerogel complexes were reduced thermally at different temperatures between 300 and 1000 degrees C in the presence of nitrogen. The resulting nanocomposites were characterized using transmission electron microscopy (TEM) and hydrogen chemisorption. TEM micrographs showed that the ruthenium nanoparticles were dispersed homogeneously throughout the porous carbon aerogel matrix, and the average sizes obtained under different conditions ranged from 1.7 to 3.8 nm. Once complete decomposition of the precursor had been achieved, the mean size of the ruthenium particles increased with increasing reduction temperature.  相似文献   

17.
Monodisperse ruthenium nanoparticles functionalized by electroactive oligothiophenes have been prepared and characterized. Using TEM, UV-visible and FTIR we established that the organization of these nanoparticles into nanospheres can be directly controlled via modulation of the pi-pi interaction between the organic components adsorbed on the surface. This finding also shows that the self-assembled nanoheterostructures may be switched from monodisperse nanoparticles to ordered nanospheres by tuning the pH.  相似文献   

18.
One-pot synthesis of ruthenium hydroxide nanoparticles on magnetic silica is described which involves the in situ generation of magnetic silica (Fe(3)O(4)@SiO(2)) and ruthenium hydroxide immobilization; the hydration of nitriles occurs in high yield and excellent selectivity using this catalyst which proceeds exclusively in aqueous medium under neutral conditions.  相似文献   

19.
It is now well-known that (2)H solid-state NMR techniques can bring a better understanding of the interaction of deuterium with metal atoms in organometallic mononuclear complexes, clusters or nanoparticles. In that context, we have recently obtained experimental quadrupolar coupling constants and asymmetry parameters characteristic of deuterium atoms involved in various bonding situations in ruthenium clusters, namely D(4)Ru(4)(CO)(12), D(2)Ru(6)(CO)(18) and other related compounds [Gutmann et al., J. Am. Chem. Soc., 2010, 132, 11759], which are model compounds for edge-bridging (μ-H) and face-capping (μ(3)-H) coordination types on ruthenium surfaces. The present work is in line with density functional theory (DFT) calculations of the electric field gradient (EFG) tensors in deuterated organometallic ruthenium complexes. The comparison of quadrupolar coupling constants shows an excellent agreement between calculated and observed values. This confirms that DFT is a method of choice for the analysis of deuterium NMR spectra. Such calculations are achieved on a large number of ruthenium clusters in order to obtain quadrupolar coupling constants characteristic of a given coordination type: terminal-D, η(2)-D(2), μ-D, μ(3)-D as well as μ(4)-D and μ(6)-D (i.e. interstitial deuterides). Given the dependence of such NMR parameters mainly on local symmetry, these results are expected to remain valid for large assemblies of ruthenium atoms, such as organometallic ruthenium nanoparticles.  相似文献   

20.
Two polypyridyl ruthenium complexes containing either a terminal pyridine or phenanthroline group have been used to coat silver nanoparticles and control their size depending on the Ag/[RuII] ratio.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号