首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
2.
Which compound classes are best suited as probes and tools for chemical biology research and as inspiration for medicinal chemistry programs? Chemical space is enormously large and cannot be exploited conclusively by means of synthesis efforts. Methods are required that allow one to identify and map the biologically relevant subspaces of vast chemical space, and serve as hypothesis‐generating tools for inspiring synthesis programs. Biology‐oriented synthesis builds on structural conservatism in the evolution of proteins and natural products. It employs a hierarchical classification of bioactive compounds according to structural relationships and type of bioactivity, and selects the scaffolds of bioactive molecule classes as starting points for the synthesis of compound collections with focused diversity. Navigation in chemical space is facilitated by Scaffold Hunter, an intuitively accessible and highly interactive software. Small molecules synthesized according to BIOS are enriched in bioactivity. They facilitate the analysis of complex biological phenomena by means of acute perturbation and may serve as novel starting points to inspire drug discovery programs.  相似文献   

3.
How structures fit together is the principal domain of molecular recognition, and current studies are evolving from the host–guest chemistry of ions to interactions between two molecules. Recent advances in the synthesis of sizable concave molecules, especially those featuring convergent functional groups, make it possible to bind smaller convex structures with considerable selectivity. One result is that hydrogen bonding can be addressed in model systems. The present review emphasizes the use of cleftlike structures as a means of probing the forces involved in nucleic acid recognition. The application of such molecules to the catalysis of chemical reactions, particularly those involved in self-replicating systems, is also described. Some implications for future pharmaceutical agents are suggested as a result of access to synthetic receptors for biologically relevant targets.  相似文献   

4.
5.
6.
Bacterial natural products in general, and non-ribosomally synthesized peptides in particular, are structurally diverse and provide us with a broad range of pharmaceutically relevant bioactivities. Yet, traditional natural product research suffers from rediscovering the same scaffolds and has been stigmatized as inefficient, time-, labour- and cost-intensive. Combinatorial chemistry, on the other hand, can produce new molecules in greater numbers, cheaper and in less time than traditional natural product discovery, but also fails to meet current medical needs due to the limited biologically relevant chemical space that can be addressed. Consequently, methods for the high throughput generation of new natural products would offer a new approach to identifying novel bioactive chemical entities for the hit to lead phase of drug discovery programs. As a follow-up to our previously published proof-of-principle study on generating bipartite type S non-ribosomal peptide synthetases (NRPSs), we now envisaged the de novo generation of non-ribosomal peptides (NRPs) on an unreached scale. Using synthetic zippers, we split NRPSs in up to three subunits and rapidly generated different bi- and tripartite NRPS libraries to produce 49 peptides, peptide derivatives, and de novo peptides at good titres up to 145 mg L−1. A further advantage of type S NRPSs not only is the possibility to easily expand the created libraries by re-using previously created type S NRPS, but that functions of individual domains as well as domain-domain interactions can be studied and assigned rapidly.  相似文献   

7.
Determination of (113)Cd chemical shift is of significant interest in NMR characterization of metal porphyrins, metal-histidine interactions, and other metal-ligand interactions in many bioinorganic complexes and metalloproteins. In this study, we present a detailed account of a number of quantum chemical investigations aimed at relating isotropic and anisotropic (113)Cd chemical shifts to the structure of several biologically relevant complexes with discrete and polymeric structures. Calculated and experimentally determined chemical shift values are compared to correlate the variation of the chemical shift values with the structural changes around the metal center. Our results infer that the density functional theory using the Sadlej basis set on the cadmium atom is a suitable method for estimating cadmium shielding values to a reasonable accuracy.  相似文献   

8.
9.
10.
Kohn-Sham density functional theory (KS-DFT) is nowadays the most widely used quantum chemical method for electronic structure calculations in chemistry and physics. Its further application in e.g. supramolecular chemistry or biochemistry has mainly been hampered by the inability of almost all current density functionals to describe the ubiquitous attractive long-range van der Waals (dispersion) interactions. We review here methods to overcome this defect, and describe in detail a very successful correction that is based on damped -C(6).R(-6) potentials (DFT-D). As examples we consider the non-covalent inter- and intra-molecular interactions in unsaturated organic molecules (so-called pi-pi stacking in benzenes and dyes), in biologically relevant systems (nucleic acid bases/pairs, proteins, and 'folding' models), between fluorinated molecules, between curved aromatics (corannulene and carbon nanotubes) and small molecules, and for the encapsulation of methane in water clusters. In selected cases we partition the interaction energies into the most relevant contributions from exchange-repulsion, electrostatics, and dispersion in order to provide qualitative insight into the binding character.  相似文献   

11.
12.
13.
本文从化学结构的 DARC 码表述方法,结构-性质相关研究的 DARC-PELCO 方法,化学数据库和计算机辅助有机合成四个方面介绍了著名的法国计算机化学研究系统,即 DARC 系统。由于这四个方面包括了计算机化学最主要的研究领域,因此本文也就概要地介绍了计算机化学。  相似文献   

14.
Because benzannulated and indole-fused medium-sized rings are found in many bioactive compounds, combining these fragments might lead to unexplored areas of biologically relevant and uncovered chemical space. Herein is shown that α-imino gold carbene chemistry can play an important role in solving the difficulty in the formation of medium-sized rings. Namely, phenylene-tethered azido-alkynes undergo arylative cyclization through the formation of a gold carbene intermediate to afford benzannulated indole-fused medium-sized tetracycles. The reactions allow a range of different aryl substitution patterns and efficient access to these otherwise difficult-to-obtain medium-sized rings. This study also demonstrates the feasibility of the semihollow-shaped C-dtbm ligand for the construction of a nine-membered ring.  相似文献   

15.
16.
17.
Astrochemistry is a discipline consolidated recently, although its roots extend back to the dawn of early civilization with the observation and mapping of the sky. The way to the understanding of the common natural laws on earth and in space paved by Galilei's observations by the telescope, has been extended in the last decades, by new technologies such as radioastronomy and space missions. Plenty of new chemistry was surprisingly discovered. Extreme rich information on the chemical “composition” of the universe is being obtained, either from the other planets and satellites in the Solar System, from meteorites and comets, or from the interstellar space. In this article we will present selected topics regarding the chemical structures and reactions being discovered. Particular attention will be devoted to aspects considered as relevant for the prebiotic processes on earth, such as those involving chirality and its role played in the origin and evolution of life.  相似文献   

18.
19.
We discuss how the basic principles of quantum chemistry and quantum mechanics can be and have been applied to a variety of problems in molecular biophysics. First, the historical development of quantum concepts in biophysics is discussed. Next, we describe a series of interesting applications of quantum chemical methods for studying biologically active molecules, molecular structures, and some of the important processes which play a role in living organisms. We discuss the application of quantum chemistry to such processes as energy storage and transformation, and the transmission of genetic information. Quantum chemical approaches are essential to comprehend and understand the molecular nature of these processes. To conclude our work, we present a short discussion of the perspectives of quantum chemical methods in modern biophysics, the field of experimental and theoretical chiral vibrational and electronic spectroscopy.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号