首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Laser induced fluorescence spectroscopy of free-base (H(2)Pc) and zinc (ZnPc) phthalocyanines trapped in rare gas and nitrogen matrices reveals a quite unexpected phenomenon with a moderate increase in the laser intensity. In all matrices except Xe, a huge increase occurs in the intensity of an emission band near 755 nm when pumping the S(1) <-- S(0) transition. The band involves a vibrational mode of the ground state, located at 1550 and 1525 cm(-1) for H(2)Pc and ZnPc, respectively. Many of the characteristics of amplified emission (AE) are exhibited by this vibronic transition. Excitation scans recorded for the AE band yield greatly enhanced site selectivity compared to what is obtained in normal fluorescence excitation scans.  相似文献   

2.
Density functional theory (DFT) calculations were carried out to describe the molecular structures, molecular orbitals, atomic charges, UV-vis absorption spectra, IR, and Raman spectra of bis(phthalocyaninato) rare earth(III) complexes M(Pc)(2) (M = Y, La) as well as their reduced products [M(Pc)(2)](-) (M = Y, La). Good consistency was found between the calculated results and experimental data. Reduction of the neutral M(Pc)(2) to [M(Pc)(2)]- induces the reorganization of their orbitals and charge distribution and decreases the inter-ring interaction. With the increase of ionic size from Y to La, the inter-ring distance of both the neutral and reduced double-decker complexes M(Pc)(2) and [M(Pc)(2)](-) (M = Y, La) increases, the inter-ring interaction and splitting of the Q bands decrease, and corresponding bands in the IR and Raman spectra show a red shift. The orbital energy level and orbital nature of the frontier orbitals are also described and explained in terms of atomic character. The present work, representing the first systemic DFT study on the bis(phthalocyaninato) yttrium and lanthanum complexes sheds further light on clearly understanding structure and spectroscopic properties of bis(phthalocyaninato) rare earth complexes.  相似文献   

3.
Femtosecond time-resolved pump-probe photoelectron spectroscopy was used to study elementary relaxation processes occurring in isolated phthalocyanine-tetrasulfonate tetra-anions ([MPc(SO3)4]4-, M=Cu,Ni, and "free-base" [H2Pc(SO3)4]4-) following Q band excitation by one-photon absorption at 775 nm. Whereas the Cu and Ni systems decay rapidly by means of internal conversion without electron loss, the free-base phthalocyanine primarily undergoes excited state tunneling electron emission. This reflects less efficient coupling to lower lying states within the corresponding spin manifold. Results are interpreted in terms of (time-dependent) density functional theory calculations of ground and electronically excited states and kinetically modeled to yield the associated rates.  相似文献   

4.
The local electronic structures of crystalline and amorphous films of zinc phthalocyanine (ZnPc) and metal-free phthalocyanine (H(2)Pc) have been studied by soft x-ray emission spectroscopy (XES). We found a clear crystalline structure dependence of the elastic-peak shape in the resonant XES spectra. The elastic peaks of both ZnPc and H(2)Pc are found to show an asymmetric shape due to resonant inelastic x-ray scattering (RIXS) at the nitrogen sites for the α-crystalline films, but not for the amorphous films. The observed RIXS feature is ascribed to the charge transfer excitation due to the Raman-active intermolecular interaction, which dominates the excited-electron dynamics in α-crystalline phthalocyanine films.  相似文献   

5.
Deperturbation analysis of the A(2)Π → X(2)Σ(+) and B(')(2)Σ(+) → X(2)Σ(+) emission spectra of (24)MgH is reported. Spectroscopic data for the v = 0 to 3 levels of the A (2)Π state and the v = 0 to 4 levels of the B'(2)Σ(+) state were fitted together using a single Hamiltonian matrix that includes (2)Π and (2)Σ(+) matrix elements, as well as off-diagonal elements coupling several vibrational levels of the two states. A Dunham-type fit was performed and the resulting Y(l,0) and Y(l,1) coefficients were used to generate Rydberg-Klein-Rees (RKR) potential curves for the A (2)Π and the B'(2)Σ(+) states. Vibrational overlap integrals were computed from the RKR potentials, and the off-diagonal matrix elements coupling the electronic wavefunctions (a(+) and b) were determined. Zero point dissociation energies (D(0)) of the A(2)Π and B'(2)Σ(+) states of (24)MgH were determined to be 12,957.5 ± 0.5 and 10,133.6 ± 0.5 cm(-1), respectively. Using the Y(0,1) coefficients, the equilibrium internuclear distances (r(e)) of the A(2)Π and B'(2)Σ(+) states were determined to be 1.67827(1) ? and 2.59404(4) A?, respectively.  相似文献   

6.
The effects of solvents on the singlet oxygen, photobleaching and fluorescence quantum yields for zinc phthalocyanine (ZnPc) and its derivatives; (pyridino)zinc phthalocyanine ((py)ZnPc), zinc octaphenoxyphthalocyanine (ZnOPPc) and zinc octaestronephthalocyanine (ZnOEPc), is presented. The effects of the solvents on the ground state spectra are also discussed. The largest red shift of the Q band was observed in aromatic solvents, the highest shift being observed for 1-chloronaphthalene. Higher singlet fluorescence quantum yields were observed in THF for ZnPc and ZnOPPC. Also in the same solvent phototransformation rather than photobleaching was observed for ZnOPPc. Split Q band in the emission and excitation spectra of ZnOPPc was observed in some solvents and this is explained in terms of the lowering of symmetry following excitation.  相似文献   

7.
8.
Phthalocyanine zinc(II) (ZnPc) was found to be adsorbed well into a Nafion (Nf) film. The kinetic analysis suggested that the adsorption of ZnPc into the Nf film is controlled by its diffusion in the Nf film with a diffusion coefficient of D = 1.9 x 10(-6) cm(2) s(-1) that is higher than those (10(-9)-10(-12) cm(2) s(-1)) of cationic redox molecules in the Nf film by 3-6 orders of magnitude. The adsorption isothermal was analyzed by a Brunauer-Emmett-Teller (BET) equation suggesting multilayer adsorption of ZnPc into the film. The BET analysis provided the amount of ZnPc for monolayer adsorption (w(m) = 1.50 x 10(-7) mol cm(-2)), from which the effective area for the ZnPc adsorption was estimated to be larger by a factor of 1.7 x 10(3) than the Nf film area (1.0 cm(2)). The absorption spectra of a Nf film adsorbing ZnPc ((Nf/ZnPc)(ads) film) exhibited two broad absorption bands at 385 and 680-750 nm without any structural features, which is significantly different from the absorption spectra of either ZnPc solution in DMF or a (Nf/ZnPc)(mix) film prepared from a DMF solution containing Nf and ZnPc by solvent evaporation. This is ascribed to the formation of a ZnPc aggregate in the (Nf/ZnPc)(ads) film. Photoluminescence data for the (Nf/ZnPc)(mix) film suggested the presence of a ZnPc monomer and dimer at equilibrium in the film with a concentration of 0.1 M and that energy transfer occurs from the monomer to the dimer in excitation of the monomer (at lambda(ex) = 609 nm) to yield emission from the dimer. By contrast, photoluminescence data for the (Nf/ZnPc)(ads) film suggested that the excited ZnPc is self-quenched significantly by the formation of the ZnPc aggregate in the film. The lesser electroactivity of ZnPc in the (Nf/ZnPc)(ads) film compared with that in the (Nf/ZnPc)(mix) film could be ascribable to more difficult diffusion of ZnPc in the former film due to the formation of the ZnPc aggregate. The adsorption of ZnPc into the Nf film was significantly regulated by simple pretreatments of the Nf film such as immersion in solvents and storage under solvent vapors. The regulation was explained by controlled physical and chemical properties of a channel for mass and ion transport that is formed by sulfonate groups, countercations, and solvent molecules in the Nf film.  相似文献   

9.
The location of the hole and acid proton in neutral nonprotonated and protonated mixed (phthalocyaninato)(porphyrinato) yttrium double-decker complexes, respectively, is studied on the basis of density functional theory (DFT) calculations on the molecular structures, molecular orbitals, atomic charges, and electronic absorption and infrared spectra of the neutral, reduced, and two possible protonated species of a mixed (phthalocyaninato)(porphyrinato) yttrium compound: [(Pc)Y(Por)], [(Pc)Y(Por)]-, [(HPc)Y(Por)], and [(Pc)Y(HPor)], respectively. When the neutral [(Pc)Y(Por)] is reduced to [(Pc)Y(Por)]-, the calculated results on the molecular structure, atomic charge, and electronic absorption and infrared spectra show that the added electron has more influence on the Pc ring than on its Por counterpart, suggesting that the location of the hole is on the Pc ring in neutral [(Pc)Y(Por)]. Nevertheless, comparison of the calculation results on the structure, orbital composition, charge distribution, and electronic absorption and infrared spectra between [(HPc)Y(Por)] and [(Pc)Y(HPor)] leads to the conclusion that the acid proton in the protonated mixed (phthalocyaninato)(porphyrinato) yttrium compound should be localized on the Por ring rather than the Pc ring, despite the localization of the hole on the Pc ring in [(Pc)Y(Por)]. This result is in line with the trend revealed by comparative studies of the X-ray single-crystal molecular structures between [MIII{Pc(alpha-OC5H11)4}(TClPP)] and [M(III)H{Pc(alpha-OC5H11)4}(TClPP)] (H2TClPP=5,10,15,20-tetrakis(4-chlorophenyl)porphyrin; M=Sm, Eu). The present work not only represents the first systemic DFT study on the structures and properties of mixed (phthalocyaninato)(porphyrinato) yttrium double-decker complexes, but more importantly sheds further light on the nature of protonated bis(tetrapyrrole) rare-earth complexes.  相似文献   

10.
In this study, we report a new ligand, 6-hexyloxy-3-[p-(3′,4′-dicyanophenoxy)phenyl]coumarin, and its fluorescent tetrasubstituted phthalocyanines {M[Pc(OBzCou)4], M = 2H, Zn(II), Co(II); Bz: Benzene}. The effect of the coumarin derivative on the intensity of the fluorescence spectra of the metal-free (H2Pc) and zinc phthalocyanine (ZnPc) derivatives was investigated. The change of the emission properties of both the coumarin moieties and the phthalocyanine core in the presence of the metal ion and the ring-opening reaction of the coumarin were studied by means of steady-state fluorescence spectroscopy. The radiative decay of the Pcs and the treated coumarin substituents bound to the Pcs was examined. The novel chromogenic compounds were characterized by elemental analysis, 1H NMR, 13C NMR, Maldi-TOF, IR and UV–Vis spectral data. The photophysical properties of the Pcs are extensively affected by their state of aggregation: in particular, dimerization and aggregation result in a remarkable modification of the absorption and emission bands and may induce significant quenching of the usually strong Pc fluorescence. The electronic spectra exhibit a band of coumarin identity together with characteristic Q and B bands of the phthalocyanine core.  相似文献   

11.
Photoexcitation of a zinc phthalocyanine-perylenediimide (ZnPc-PDI) dyad and a bis(zinc phthalocyanine)-perylenediimide [(ZnPc) 2-PDI] triad results in formation of the triplet excited state of the PDI moiety without the fluorescence emission, whereas addition of Mg (2+) ions to the dyad and triad results in formation of long-lived charge-separated (CS) states (ZnPc (*+)-PDI (*-)/Mg (2+) and (ZnPc) 2 (*+)-PDI (*-)/Mg (2+)) in which PDI (*-) forms a complex with Mg (2+). Formation of the CS states in the presence of Mg (2+) was confirmed by appearance of the absorption bands due to ZnPc (*+) and PDI (*-)/Mg (2+) complex in the time-resolved transient absorption spectra of the dyad and triad. The one-electron reduction potential ( E red) of the PDI moiety in the presence of a metal ion is shifted to a positive direction due to the binding of Mg (2+) to PDI (*-), whereas the one-electron oxidation potential of the ZnPc moiety remains the same. The binding of Mg (2+) to PDI (*-) was confirmed by the ESR spectrum, which is different from that of PDI (*-) without Mg (2+). The energy of the CS state (ZnPc (*+)-PDI (*-)/Mg (2+)) is determined to be 0.79 eV, which becomes lower that of the triplet excited state (ZnPc- (3)PDI*: 1.07 eV). This is the reason why the long-lived CS states were attained in the presence of Mg (2+) instead of the triplet excited state of the PDI moiety.  相似文献   

12.
Multireference spin-orbit configuration interaction calculations have been carried out for the valence and low-lying Rydberg states of CH(3)I. Potential energy surfaces along the C-I dissociation coordinate (minimal energy paths with respect to the umbrella angle) have been obtained as well as transition moments for excitation of the Rydberg states. It is shown that the B and C absorption bands of CH(3)I are dominated by the perpendicular (3)R(1),(1)R?(E)←X??A(1) transitions, while the (3)R(2)(E),?(3)R(0(+) )(A(1))←X??A(1) transitions are very weak. It is demonstrated that the bound Rydberg states of the B and C bands are predissociated due to the interaction with the repulsive E and A(2) components of the (3)A(1) state, with the (3)A(1)(E) state being the main decay channel. It is predicted that the only possibility to obtain the I((2)P(3/2)) ground state atoms from the CH(3)I photodissociation in the B band is by interaction of the (3)R(1)(E) state with the repulsive (1)Q(E) valence state at excitation energies above 55,000 cm(-1). The calculated ab initio data are used to analyze the influence of the Rydberg state vibrational excitation on the decay process. It is shown that, in contrast to intuition, excitation of the ν(3) C-I stretching mode supresses the predissociation, whereas the ν(6) rocking vibration enhances the predissociation rate.  相似文献   

13.
Rotationally resolved spectra of the B(2)Π - X(2)Π 0(0)(0) electronic origin bands and 11(1)(1) μ(2)Σ-μ(2)Σ vibronic hot band transitions of both C(6)H and C(6)D have been recorded in direct absorption by cavity ring-down spectroscopy through a supersonically expanding planar plasma. For both origin and hot bands accurate spectroscopic parameters are derived from a precise rotational analysis. The origin band measurements extend earlier work and the 11(1)(1) μ(2)Σ-μ(2)Σ vibronic hot bands are discussed here for the first time. The Renner-Teller effect for the lowest bending mode ν(11) is analyzed, yielding the Renner parameters ε(11), vibrational frequencies ω(11), and the true spin-orbit coupling constants A(SO) for both (2)Π electronic states. From the Renner-Teller analysis and spectral intensity measurements as a function of plasma jet temperature, the excitation energy of the lowest-lying 11(1) μ(2)Σ vibronic state of C(6)H is determined to be (11.0 ± 0.8) cm(-1).  相似文献   

14.
The dual Sonogashira coupling reactions of 1,3,5-tribromo-2,4,6-triiodobenzene with p-X-phenylacetylene followed by another p-Y-phenylacetylene (X, Y = OSiMe(2)Bu-t or CO(2)Et) produced a series of differentially functionalized hexakis(p-substituted-phenylethynyl)benzenes with D(3)(h)() symmetry (3h: 1,3,5-X-2,4,6-Y) and C(2)(v)() symmetry (3g,i: 1,2,3,5-X-4,6-Y; 3f,j: 1-X-2,3,4,5,6-Y). In a similar manner, 1,3,5-tris(p-X-phenylethynyl)-2,4,6-tris(p-Y-phenylethynyl)benzenes and 1,2,3,5-tetrakis(p-X-phenylethynyl)-4,6-bis(p-Y-phenylethynyl)benzenes (3l: X = OSiMe(2)Bu-t, Y = NO(2); 3m,n: X = N(n-octyl)(2), Y = NO(2); 3o,p: X = N(n-octyl)(2), Y = CH(OCH(2)CH(2)O); 3q,r: X = N(n-octyl)(2), Y = CHO; 3s,t: X = N(n-octyl)(2), Y = CH=C(CN)(2)) were prepared. Compounds 3 with electron-withdrawing groups self-aggregated by a pi-pi stacking interaction and solvophobic effect. In the absorption and fluorescence spectra of 3, lambda(max)(abs) and lambda(max)(em) showed red shifts as the donor-acceptor dipole at the end functional groups of the para position was increased. In the absorption spectra, lambda(max)(abs) showed red shifts upon increasing the number of combination of electron-donating and -withdrawing groups on the diagonal line in a molecule, whereas lambda(max)(em) in the fluorescence spectra exhibited red shifts upon decreasing the molecular symmetry.  相似文献   

15.
16.
With the view to creating novel sandwich-type tetrapyrrole rare earth complexes toward potential applications in material science and chiral catalysis, two new optically active mixed (phthalocyaninato)(porphyrinato) rare earth triple-decker complexes with both (R)- and (S)-enantiomers [M(2)(Pc)(2)(TCBP)] {TCBP = Meso-tetrakis [3,4-(11,12:13,14-di(1',2'-naphtho)-1,4,7,10,15,18-hexaoxacycloeicosa-2,11,13-triene)-phenyl] porphyrinate; M = Eu (1), Y (2)} have been designed and prepared by treating optically active metal free porphyrin (R)-/(S)-H(2)TCBP with M(Pc)(2) in the presence of corresponding M(acac)(3)·nH(2)O (acac = acetylacetonate) in refluxing 1,2,4-trichlorobenzene (TCB). These novel mixed ring rare earth triple-decker compounds were characterized by a wide range of spectroscopic methods including MS, (1)H NMR, IR, electronic absorption, and magnetic circular-dichroism (MCD) spectroscopic measurements in addition to elemental analysis. Perfect mirror image relationship was observed in the Soret and Q absorption regions in the circular-dichroism (CD) spectra of the (R)- and (S)-enantiomers, indicating the optically active nature of these two mixed (phthalocyaninato)(porphyrinato) rare earth triple-decker complexes. This result reveals the effective chiral information transfer from the peripheral chiral binaphthyl units to the porphyrin and phthalocyanine chromophores in the triple-decker molecule because of the intense π-π interaction between porphyrin and phthalocyanine rings. In addition, their electrochemical properties have also been investigated by cyclic voltammetry (CV).  相似文献   

17.
The vibrational (IR and Raman) spectra of neutral and reduced mixed (phthalocyaninato)(porphyrinato) yttrium(III) double-decker complexes Y(Pc)(Por) and [Y(Pc)(Por)] [the simplified models of mixed (phthalocyaninato)(porphyrinato) rare earth(III) complexes] are studied using density functional theory (DFT) calculations. The simulated IR and Raman spectra of Y(Pc)(Por) are compared with the experimental IR spectrum of Tb(Pc)(TClPP) and Raman spectrum of Y(Pc)(TClPP), respectively, and many bands can acceptably fit in spite of the different species. On the basis of comparison with the simulated spectra of PbPc and PbPor together with the assistance of normal coordinate analysis, the calculated frequencies in their IR and Raman spectra are identified in terms of the vibrational mode of different ligand for the first time. The calculated frequency at 1048 cm−1 in the IR spectrum of [Y(Pc)(Por)] with contribution from both Pc and Por vibrational modes is the characteristic IR vibrational mode of the reduced double-decker, while the characteristic IR vibrational mode of Y(Pc)(Por) attributed from the vibration of phthalocyanine monoanion radical Pc appears at 1257 cm−1. In line with our previous experimental findings that the Raman spectra of M(Pc)(TPP) and M(Pc)(TClPP) are dominated by the Pc vibrational modes, theoretical calculations indicate that most of the Raman vibrational modes contributed from Por ring are covered up by those of Pc ring and thus are hard to be recognized in the Raman spectra of [Y(Pc)(Por)] and Y(Pc)(Por) due to their much weaker intensity in comparison with that of Pc ligand. Comparison in the IR and Raman spectra between [Y(Pc)(Por)] and Y(Pc)(Por) also suggests the localization of hole on the Pc ring in the neutral double-decker Y(Pc)(Por). The present work, representing the first detailed DFT study on the vibrational spectra of mixed (phthalocyaninato)(porphyrinato) rare earth(III) double-decker complexes, is useful in helping to understand the vibrational spectroscopic properties of this series of mixed tetrapyrrole ring complexes.  相似文献   

18.
Rhenium(bipyridine)(tricarbonyl)(picoline) units have been linked covalently to tetraphenylmetalloporphyrins of magnesium and zinc via an amide bond between the bipyridine and one phenyl substituent of the porphyrin. The resulting complexes, abbreviated as [Re(CO)(3)(Pic)Bpy-MgTPP][OTf] and [Re(CO)(3)(Pic)Bpy-ZnTPP][OTf], exhibit no signs of electronic interaction between the Re(CO)(3)(bpy) units and the metalloporphyrin units in their ground states. However, emission spectroscopy reveals solvent-dependent quenching of porphyrin emission on irradiation into the long-wavelength absorption bands localized on the porphyrin. The characteristics of the excited states have been probed by picosecond time-resolved absorption (TRVIS) spectroscopy and time-resolved infrared (TRIR) spectroscopy in nitrile solvents. The presence of the charge-separated state involving electron transfer from MgTPP or ZnTPP to Re(bpy) is signaled in the TRIR spectra by a low-frequency shift in the nu(CO) bands of the Re(CO)(3) moiety similar to that observed by spectroelectrochemical reduction. Long-wavelength excitation of [Re(CO)(3)(Pic)Bpy-MTPP][OTf] results in characteristic TRVIS spectra of the S(1) state of the porphyrin that decay with a time constant of 17 ps (M = Mg) or 24 ps (M = Zn). The IR bands of the CS state appear on a time scale of less than 1 ps (Mg) or ca. 5 ps (Zn) and decay giving way to a vibrationally excited (i.e., hot) ground state via back electron transfer. The IR bands of the precursors recover with a time constant of 35 ps (Mg) or 55 ps (Zn). The short lifetimes of the charge-transfer states carry implications for the mechanism of reaction in the presence of triethylamine.  相似文献   

19.
Density functional theory and CASSCF calculations have been used to optimize the geometries of binuclear gold(I) complexes [H(3)PAu(C[triple bond]C)(n)AuPH(3)] (n=1-6) in their ground states and selected lowest energy (3)(pi pi*) excited states. Vertical excitation energies obtained by time-dependent density functional calculations for the spin-forbidden singlet-triplet transitions have exponential-decay size dependence. The predicted singlet-triplet splitting limit of [H(3)PAu(C[triple bond]C)(proportional/variant)AuPH(3)] is about 8317 cm(-1). Calculated singlet-triplet transition energies are in reasonable agreement with available experimental observations. The effect of the heavy atom Au spin-orbit coupling on the (3)(pi pi*) emission of these metal-capped one-dimensional carbon allotropes has been investigated by MRCI calculations. The contribution of the spin- and dipole-allowed singlet excited state to the spin-orbit-coupling wave function of the (3)(pi pi*) excited state makes the low-lying acetylenic triplet excited states become sufficiently allowed so as to appear in both electronic absorption and emission.  相似文献   

20.
Reduced symmetry phthalocyanines are finding use in an increasing number of industrial applications. A detailed understanding of the electronic structure of the pi-system will greatly facilitate the design of new complexes, which fit the specifications required in many of these emerging high technology fields. NMR, electronic absorption, magnetic circular dichroism (MCD), and fluorescence emission and excitation spectra have been recorded for five generic metal phthalocyanine (MPc) derivatives in which additional benzene rings are fused either radially or obliquely onto at least one of the four peripheral benzo groups. The spectroscopy of four radially substituted compounds, zinc mononaphthotribenzotetraazaporphyrine (Zn3B1N), zinc monobenzotrinaphthotetraazaporphyrine (Zn1B3N), and two cis and trans zinc dibenzodinaphthotetraazaporphyrine (Zn2B2N) isomers, is compared to that of the obliquely fused structural isomer of Zn3B1N (Zn3BoN) and the D(4)(h)() symmetry parent compounds, ZnPc and zinc naphthalocyanine (ZnNc). The selection of Zn(II) as the central metal eliminates the possibility of charge transfer between the metal and ring. None of the complexes studied contain any sigma-bonded peripheral substituents. (1)H NMR signals of the seven compounds are assigned on the basis of the coupling patterns, integrated proton numbers, and decoupling experiments. The SIMPFIT program was used to perform spectral band deconvolution analyses of absorption and MCD spectra. ZINDO molecular orbital calculations are described, and the optical spectra are assigned on the basis of the MO models that have been developed previously to account for the spectral properties of metal porphyrin (MP(-2)) and metal phthalocyanine (MPc(-2)) complexes.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号