首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Mn(2+) complexes represent an alternative to Gd(3+) chelates which are widely used contrast agents in magnetic resonance imaging. In this perspective, we investigated the Mn(2+) complexes of two 12-membered, pyridine-containing macrocyclic ligands bearing one pendant arm with a carboxylic acid (HL(1), 6-carboxymethyl-3,6,9,15-tetraazabicyclo[9.3.1] pentadeca-1(15),11,13-triene) or a phosphonic acid function (H(2)L(2), 6-dihydroxyphosphorylmethyl-3,6,9,15-tetraazabicyclo[9.3.1]pentadeca-1(15),11,13-triene). Both ligands were synthesized using nosyl or tosyl amino-protecting groups (starting from diethylenetriamine or tosylaziridine). The X-ray crystal structures confirmed a coordination number of 6 for Mn(2+) in their complexes. In aqueous solution, these pentadentate ligands allow one free coordination site for a water molecule. Potentiometric titration data indicated a higher basicity for H(2)L(2) than that for HL(1), related to the electron-donating effect of the negatively charged phosphonate group. According to the protonation sequence determined by (1)H and (31)P pH-NMR titrations, the first two protons are attached to macrocyclic amino groups whereas the subsequent protonation steps occur on the pendant arm. Both ligands form thermodynamically stable complexes with Mn(2+), with full complexation at physiological pH and 1:1 metal to ligand ratio. The kinetic inertness was studied via reaction with excess of Zn(2+) under various pHs. The dissociation of MnL(2) is instantaneous (at pH 6). For MnL(1), the dissociation is very fast (k(obs) = 1-12 × 10(3) s(-1)), much faster than that for MnDOTA, MnNOTA, or the Mn(2+) complex of the 15-membered analogue. It proceeds exclusively via the dissociation of the monoprotonated complex, without any influence of Zn(2+). In aqueous solution, both complexes are air-sensitive leading to Mn(3+) species, as evidenced by UV-vis and (1)H NMRD measurements and X-ray crystallography. Cyclic voltammetry gave low oxidation peak potentials (E(ox) = 0.73 V for MnL(1) and E(ox) = 0.68 V for MnL(2)), in accordance with air-oxidation. The parameters governing the relaxivity of the Mn(2+) complexes were determined from variable-temperature (17)O NMR and (1)H NMRD data. The water exchange is extremely fast, k(ex) = 3.03 and 1.77 × 10(9) s(-1) for MnL(1) and MnL(2), respectively. Variable-pressure (17)O NMR measurements have been performed to assess the water exchange mechanism on MnL(1) and MnL(2) as well as on other Mn(2+) complexes. The negative activation volumes for both MnL(1) and MnL(2) complexes confirmed an associative mechanism of the water exchange as expected for a hexacoordinated Mn(2+) ion. The hydration number of q = 1 was confirmed for both complexes by (17)O chemical shifts. A relaxometric titration with phosphate, carbonate or citrate excluded the replacement of the coordinated water molecule by these small endogenous anions.  相似文献   

2.
Two N-methylphosphonic acid derivatives of a 14-membered tetraazamacrocycle containing pyridine have been synthesized, H(4)L(1) and H(6)L(2). The protonation constants of these compounds and the stability constants of complexes of both ligands with Ni(2+), Cu(2+) and Zn(2+) were determined by potentiometric methods at 298 K and ionic strength 0.10 mol dm(-3) in NMe(4)NO(3). The high overall basicity of both compounds is ascribed to the presence of the phosphonate arms. (1)H and (31)P NMR spectroscopic titrations were performed to elucidate the sequence of protonation, which were complemented by conformational analysis studies. The complexes of these ligands have stability constants of the order of or higher than those formed with ligands having the same macrocyclic backbone but acetate arms. At pH = 7 the highest pM values were found for solutions containing the compound with three acetate groups, followed immediately by those of H(6)L(2), however, as expected, the increasing pH favours the complexes of ligands containing phosphonate groups. The single-crystal structure of Na(2)[Cu(HL(1))]NO(3)x8H(2)O has shown that the coordination geometry around the copper atom is a distorted square pyramid. Three nitrogen atoms of the macrocyclic backbone and one oxygen atom from one methylphosphonate arm define the basal plane, and the apical coordination is accomplished via the nitrogen atom trans to the pyridine ring of the macrocycle. To achieve this geometric arrangement, the macrocycle adopts a folded conformation. This structure seems consistent with Uv-vis-NIR spectroscopy for the Ni(2+) and the Cu(2+) complexes and with the EPR for the latter.  相似文献   

3.
An organic ligand 2,5-di(3-pentanedionylthio)-1,3,4-thiadiazole (H2L) reacts with metal (Mn, Ni, Fe) salts, resulting in 24-membered dimetal macrocyclic complexes [MnL(H2O)(dmso)](2).2dmso, [NiL(H2O)(dmf)](2).2dmf, [MnL(dmf)2]2 and [Fe2L2(solvent)2(SO4)] (solvent=dmso; H2O ; dmf). Di-manganese macrocyclic complexes [MnL(dmf)(dmso)]2 and [MnL(H2O)2](2).6H2O can also be obtained directly by aerobic assembly reaction of MnCl2, dipotassium 1,3,4-thiadiazole-2,5-dithiolate (K2tdadt) and acetylacetone (H2acac) in various solvents, accompanying a C-S bond formation between acetylacetone and the mercapto N-heterocycle. Disulfide has been considered as the intermediate in the assembly reaction. Meanwhile an assembly reaction including MnCl2, 2-mercaptobenzimidazole and H2acac has produced an organic compound 2-(3-pentanedionylthio)benzimidazole with a new C-S bond. These dimetal complexes have similar macrocyclic structures, in which solvent molecules and sulfate coordinate to the octahedral metal in trans-configuration, whereas a pair of water molecules are located in octahedral cis-positions for owing to a small steric effect. A host cavity of sufficiently large size exists in the macrocyclic structure to trap the solvent molecules and the sulfate anion. The IR spectra have been used to assign the solvent molecules trapped and the sulfate anion which is shown as a bridged bidentate ligand. Thermal analyses show the stability of the macrocyclic backbone below 200 degrees C and gradual release processes of the trapped solvent molecules. Decomposition and oxidation of the dimetal macrocycle backbone occur at 300-500 degrees C, resulting in a metal sulfate. Further decomposition led to metal oxide at 500-600 degrees C.  相似文献   

4.
Three phosphinic acid 1,4,7-triazacyclononane (TACN) derivatives bearing methylphosphinic (TRAP-H), methyl(phenyl)phosphinic (TRAP-Ph), or methyl(hydroxymethyl)phosphinic acid (TRAP-OH) pendant arms were investigated as members of a new family of efficient Ga(3+) chelators, TRAP ligands (triazacyclononane phosphinic acids). Stepwise protonation constants of ligands and stability constants of their complexes with Ga(3+), selected divalent metal, and Ln(3+) ions were determined by potentiometry. For comparison, equilibrium data for the metal ion-NOTA (1,4,7-triazacyclononane-1,4,7-triacetic acid) systems were redetermined. These ligands exhibit high thermodynamic selectivity for Ga(3+) over the other metal ions (log K(GaL) - log K(ML) = 7-9) and a selective complexation of smaller Mg(2+) over Ca(2+). Stabilities of the Ga(3+) complexes are dependent on the basicity of the donor atoms: [Ga(NOTA)] (log K(GaL) = 29.6) > [Ga(TRAP-OH)] (log K(GaL) = 23.3) > [Ga(TRAP-H)] (log K(GaL) = 21.9). The [Ga(TRAP-OH)] complex exhibits unusual reversible rearrangement of the "in-cage" N(3)O(3) complex to the "out-of-cage" O(6) complex. The in-cage complex is present in acidic solutions, and at neutral pH, Ga(3+) ion binds hydroxide anion, induces deprotonation and coordination of the P-hydroxymethyl group(s), and moves out of the macrocyclic cavity; the hypothesis is supported by a combination of results from potentiometry, multinuclear nuclear magnetic resonance spectrometry, and density functional theory calculations. Isomerism of the phosphinate Ga(3+) complexes caused by a combination of the chelate ring conformation, the helicity of coordinated pendant arms, and the chirality of the coordinated phosphinate groups was observed. All Ga(3+) complexes are kinetically inert in both acidic and alkaline solutions. Complex formation studies in acidic solutions indicate that Ga(3+) complexes of the phosphinate ligands are formed quickly (minutes) and quantitatively even at pH <2. Compared to common Ga(3+) chelators (e.g., 1,4,7,10-tetraazacyclododecane-1,4,7,10-tetraacetic acid (DOTA) derivatives), these novel ligands show fast complexation of Ga(3+) over a broad pH range. The discussed TRAP ligands are suitable alternatives for the development of (68)Ga radiopharmaceuticals.  相似文献   

5.
The binding properties of 1,4,7-triazacyclononane ([9]aneN3) to metal cations can be adapted through sequential functionalisation of the secondary amines with aminoethyl or aminopropyl pendant arms to generate ligands with increasing numbers of donor atoms. The new amino functionalised pendant arm derivative of 1,4,7-triazacyclononane ([9]aneN3), L1, has been synthesised and its salt [H2L1]Cl2 characterised by X-ray diffraction. The protonation constants of the ligands L1-L4 having one, two or three aminoethyl or three aminopropyl pendant arms, respectively, on the [9]aneN3 framework, and the thermodynamic stabilities of their mononuclear complexes with CuII and ZnII have been investigated by potentiometric measurements in aqueous solutions. In order to discern the protonation sites of ligands L1-L4, 1H NMR spectroscopic studies were performed in D2O as a function of pH. While the stability constants of the CuII complexes increase on going from L1 to L2 and then decrease on going from L2 to L3 and L4, those for ZnII complexes increase from L1 to L3 and then decrease for L4. The X-ray crystal structures of the complexes [Cu(L1)(Br)]Br, [Zn(L1)(NO3)]NO3, [Cu(L2)](ClO4)2, [Ni(L2)(MeCN)](BF4)2, [Zn(L4)](BF4)2.MeCN and [Mn(L4)](NO3)2.1/2H2O have been determined. In both [Cu(L1)(Br)]Br and [Zn(L1)(NO3)]NO3 the metal ion is five co-ordinate and bound by four N-donors of the macrocyclic ligand and by one of the two counter-anions. The crystal structures of [Cu(L2)](ClO4)2 and [Ni(L2)(MeCN)](BF4)2 show the metal centre in slightly distorted square-based pyramidal and octahedral geometry, respectively, with a MeCN molecule completing the co-ordination sphere around NiII in the latter. In both [Zn(L4)](BF4)2.MeCN and [Mn(L4)](NO3)2.1/2H2O the metal ion is bound by all six N-donors of the macrocyclic ligand in a distorted octahedral geometry. Interestingly, and in agreement with the solution studies and with the marked preference of CuII to assume a square-based pyramidal geometry with these types of ligands, the reaction of L4 with one equivalent of Cu(BF4)2.4H2O in MeOH at room temperature yields a square-based pyramidal five co-ordinate CuII complex [Cu(L6)](BF4)2 where one of the three propylamino pendant arms of the starting ligand has been cleaved to give L6.  相似文献   

6.
The new macrocyclic ligand 1,9(4,7)-diphenanthroline-3,7,11,15-tetraazacyclohexadecaphane (L) was synthesized by a 2?:?2 reaction of 1,10-phenanthroline-4,7-dialdehyde with 1,3-diaminopropane, followed by reduction with NaBH(4). L contains two phenanthroline groups linked together by two 1,3-diaminopropane chains in such a way that the heteroaromatic nitrogen atoms point outside the ligand cavity. The ligand structure defines two pairs of identical compartments displaying a specific ability in the binding of protons (1,3-diaminopropane) and metal ions (phenanthroline). Protonation and Zn(II) coordination were studied by means of potentiometric and spectroscopic ((1)H NMR, UV-vis, fluorescence) techniques. Both protonation and Zn(II) coordination consistently affect the fluorescence emission properties of L, giving rise to enhancement or quenching of the emission, depending on the species involved. L becomes emissive upon protonation, but the formation of the highly protonated species, in particular the fully protonated [H(6)L](6+), quenches the emission. The mono- and dinuclear Zn(II) complexes of the unprotonated ligand are non-emissive, like free L, while Zn(II) binding to [HL](+) activates the emission. The most interesting aspect, however, is the chelation enhancement of quenching (CHEQ) observed upon Zn(II) binding to [H(2)L](2+) and [H(4)L](4+), being among the few examples of CHEQ effect observed for Zn(II) complexes. Hydrogen bonding between a metal coordinated water molecule and a phenanthroline group seems to be responsible for the CHEQ observed for [ZnH(2)L](4+).  相似文献   

7.
Single p-toluic acid pendant groups were attached to 1,4,7,10,13-pentaazacyclopentadecane (15aneN5) and 1,4,8,11-tetraazacyclotetradecane (cyclam) to prepare bifunctional reagents for radiolabeling monoclonal antibodies with (64,67)Cu. The ligands are 1,4,7,10,13-pentaazacyclopentadecane-1-(alpha-1,4-toluic acid) (PCBA) and 1,4,8,11-tetraazacyclotetradecane-1-(alpha-1,4-toluic acid) (CPTA). For the parent macrocycles and their pendant arm derivatives, the 1:1 Cu(2+) complexes dissociate only below pH 2. At pH 0.0 and 25 degrees C the CPTA-Cu complex has a half-life toward complete dissociation of 24 days. A new approach was developed for the estimation of the Cu(2+) stability constant for the kinetically robust CPTA. All other formation constants were determined at 25.0 degrees C with batch spectrophotometric techniques. Potentiometric titrations were used to determine the protonation constants of the macrocyclic ligands as well as of the metal chelates. The protonation constants, stability constants, and pM's are discussed in terms of both molecular mechanics calculations and the ligands' potential applicability as copper(II) radiopharmaceuticals.  相似文献   

8.
Three novel chelators based on the 6-amino-6-methylperhydro-1,4-diazepine scaffold and possessing three pendant N-acetic or N-α-methylacetic acid have been synthesised. The ligands contain six donor atoms for complexation of Mn(II) ions and thus potentially leave an additional site for coordination of a water molecule. The protonation constants of the ligands and the stability constants of their complexes formed with Mn(II) ion were determined by pH-potentiometric titrations in 0.15 M NaCl solution at 25 °C and compared to those of the parent AAZTA ligand (AAZTA = 6-amino-6-methylperhydro-1,4-diazepine tetraacetic acid). In spite of the similar value of the total basicity (Σlog K), the values of the stability constants of the Mn(II)AAZTA-like complexes are more than three orders of magnitude lower than that of MnAAZTA (log K(MnL) = 14.19). A detailed (1)H and (17)O NMR relaxometric study was carried out on the Mn(II) complexes in aqueous solution as a function of pH, temperature and magnetic field strength. The (1)H NMRD profiles of all the complexes show a similar shape, typical of low-molecular weight systems, but amplitudes that markedly differ to indicate a different degree of hydration. A similar behaviour is shown by the (17)O NMR transverse relaxation rates and chemical shift data as a function of temperature. The experimental data can be rationalised by considering the presence in solution of a mixture of two isomeric species differing in coordination number (7 and 6) and in the number (1 and 0) of bound water molecules. Whereas this type of coordination equilibrium has been previously reported for lanthanide(III) complexes, it is observed for the first time on Mn(II) chelates.  相似文献   

9.
The binding properties of dioxadiaza- ([17](DBF)N2O2) and trioxadiaza- ([22](DBF)N2O3), macrocyclic ligands containing a rigid dibenzofuran group (DBF), to metal cations and structural studies of their metal complexes have been carried out. The protonation constants of these two ligands and the stability constants of their complexes with Ca2+, Ba2+, and Mn2+, Co2+, Ni2+, Cu2+, Zn2+ and Cd2+, were determined at 298.2 K in methanol-water (1:1, v/v), and at ionic strength 0.10 mol dm-3 in KNO3. The values of the protonation constants of both ligands are similar, indicating that no cavity size effect is observed. Only mononuclear complexes of these ligands with the divalent metal ions studied were found, and their stability constants are lower than expected, especially for the complexes of the macrocycle with smaller cavity size. However, the Cd2+ complex with [17](DBF)N2O2 exhibits the highest value of stability constant for the whole series of metal ions studied, indicating that this ligand reveals a remarkable selectivity for cadmium(II) in the presence of all the metal ions studied, except copper(II), indicating that this ligand reveals a remarkable selectivity for cadmium(II) in the presence of the mentioned metal ions. The crystal structures of H2[17](DBF)N2O3(2+) (diprotonated form of the ligand) and of its cadmium complex were determined by X-ray diffraction. The Cd2+ ion fits exactly inside the macrocyclic cavity exhibiting coordination number eight by coordination to all the donor atoms of the ligand, and additionally to two oxygen atoms from one nitrate anion and one oxygen atom from a water molecule. The nickel(II) and copper(II) complexes with the two ligands were further studied by UV-vis-NIR and the copper(II) complexes also by EPR spectroscopic techniques in solution indicating square-pyramidal structures and suggesting that only one nitrogen and oxygen donors of the ligands are bound to the metal. However an additional weak interaction of the second nitrogen cannot be ruled out.  相似文献   

10.
A novel class of 1,4,7,10-tetraazacyclododecane-1,4,7-tris(methylenecarboxylic) acid (DO3A)-based lanthanide complexes with relaxometric response to Ca(2+) was synthesized, and their physicochemical properties were investigated. Four macrocyclic ligands containing an alkyl-aminobis(methylenephosphonate) side chain for Ca(2+)-chelation have been studied (alkyl is propyl, butyl, pentyl, and hexyl for L(1), L(2), L(3), and L(4), respectively). Upon addition of Ca(2+), the r(1) relaxivity of their Gd(3+) complexes decreased up to 61% of the initial value for the best compounds GdL(3) and GdL(4). The relaxivity of the complexes was concentration dependent (it decreases with increasing concentration). Diffusion NMR studies on the Y(3+) analogues evidenced the formation of agglomerates at higher concentrations; the aggregation becomes even more important in the presence of Ca(2+). (31)P NMR experiments on EuL(1) and EuL(4) indicated the coordination of a phosphonate to the Ln(3+) for the ligand with a propyl chain, while phosphonate coordination was not observed for the analogue bearing a hexyl linker. Potentiometric titrations yielded protonation constants of the Gd(3+) complexes. log K(H1) values for all complexes lie between 6.12 and 7.11 whereas log K(H2) values are between 4.61 and 5.87. Luminescence emission spectra recorded on the Eu(3+) complexes confirmed the coordination of a phosphonate group to the Ln(3+) center in EuL(1). Luminescence lifetime measurements showed that Ca-induced agglomeration reduces the hydration number which is the main cause for the change in r(1). Variable temperature (17)O NMR experiments evidenced high water exchange rates on GdL(1), GdL(2), and GdL(3) comparable to that of the aqua ion.  相似文献   

11.
New 30-membered achiral and chiral polyaza macrocyclic ligands, L1 and L2 were synthesized directly from [3 + 3] condensation of phthalic dicarboxaldehyde with cis- and (1R,2R)-diaminocyclohexane, respectively. The trimeric macrocyclic structures were confirmed by electrospray ionization mass spectrometry (ESI-MS), 1H NMR, 13C NMR spectroscopy and elemental analysis. Potentiometry was used to determine the protonation constants of the ligands. UV-vis spectrophotometric titration was employed to investigate the coordination and conformational properties of the chiral ligand (L2). Direct enantioselective aldol reaction has been successfully performed using 4-nitrobenzaldehyde and acetone in the presence of the chiral macrocycle and its zinc(II) complexes as catalysts.  相似文献   

12.
利用1,4-二-(4-羧基吡啶基)丁烷(L)合成了两种锰的新配位化合物{[MnL2(H2O)4]·2H2O·2ClO4}n(1)和[MnL(H2O)3]·H2O·2Cl}n(2).单晶X-射线衍射结构分析表明,1是由氢键所连接而成的二维互相交织的结构,2呈现出二重互锁的三维结构.结果显示在固体中反离子形成氢键的能力对1和2的结构起关键作用.  相似文献   

13.
3,6-Dioxa-4-keto-, 2-benzyl-3,6-dioxa-4-keto-, and 3-oxa-6-thio-5-ketooctanedioic acids were obtained by the reaction of diglycolic acid anhydride with glycolic, β-phenyllactic, and thioglycolic acids. 2,9-Dibenzyl-3,8-dioxa-4,7-diketodecanoic acid was obtained by the reaction of succinyl chloride with β-phenyllactic acid. Eight macrocyclic amido esters and amido thioesters that are new polydentate macrocyclic ligands were synthesized by the reaction of the chlorides of the acids obtained with 3-oxa-1,5-diaminopentane, 3,6-dioxa-1,8-diaminooctane, and 1,4-diaminobutane. See [1] for communication 4. Translated from Khimiya Geterotsiklicheskikh Soedinenii, No. 3, pp. 306–309, March, 1980.  相似文献   

14.
Seven-coordinate manganese(II) complexes [Mn(L)(H2O)2]2+, where L represents an equatorial pentadentate macrocyclic ligand with five nitrogen donor atoms, were studied with regard to their acid-base properties, water-exchange rate constants, and corresponding activation parameters (DeltaH, DeltaS, and DeltaV). Three of the studied complexes without imine bonds in the macrocyclic ligand are proven superoxide dismutase (SOD) mimetics. Their water-exchange parameters were compared with those of the imino groups containing complex [Mn(L1)(Cl)2] (dichloro-2,13-dimethyl-3,6,9,12,18-pentaazabicyclo[12.3.1]-octadeca-1(18),2,12,14,16-pentaenemanganese(II)), which does not show SOD activity. In addition the X-ray crystal structure of a new complex, dichloro-2,6-bis[1-(2-(N-methylamino)ethylimino)ethyl]pyridine-manganese(II) [Mn(L2)(Cl)2], which is the acyclic analog of [Mn(L1)(Cl)2], is reported. Stability constants of the complexes and the pKa values of the ligands were measured by potentiometric titration. The titrations of [Mn(L1)(H2O)2]2+ and [Mn(L2)(H2O)2]2+ led to complicated species distribution curves because of their ligands containing imine bonds. Water exchange was measured by temperature- and pressure-dependent 17O NMR techniques. In addition to the measurements on [Mn(EDTA)(H2O)]2- and its derivatives, this is the only study of water exchange on seven-coordinate manganese complexes. The water exchange rate constants vary between 1.6 x 107 s-1 and 5.8 x 107 s-1 at 25 degrees C and are mainly controlled by the pi-acceptor abilities of the ligands. The exchange rate constant of the diaqua-1,4,7,10,13-pentaazacyclopentadecanemanganese(II) [Mn([15]aneN5)(H2O)2]2+ complex seems to be even higher but could not be exactly determined. On the basis of the obtained activation parameters, the exchange mechanism of the studied seven-coordinate manganese(II) complexes follows a dissociative pathway (Id mechanism). DFT calculations (UB3LYP/LANL2DZp) were performed to obtain the energy required for the dissociation of the coordinated water molecule, that is, the energy difference between the starting seven-coordinate complex and a six-coordinate intermediate. The results have been discussed in terms of the catalytic mechanism of the proven SOD mimetics.  相似文献   

15.
We have synthesized ditopic ligands L(1), L(2), and L(3) that contain two DO3A(3-) metal-chelating units with a xylene core as a noncoordinating linker (DO3A(3-) = 1,4,7,10-tetraazacyclododecane-1,4,7-triacetate; L(1) = 1,4-bis{[4,7,10-tris(carboxymethyl)-1,4,7,10-tetraazacyclododecane-1-yl]methyl}benzene; L(2) = 1,3-bis{[4,7,10-tris(carboxymethyl)-1,4,7,10-tetraazacyclododecane-1-yl]methyl}benzene; L(3) = 3,5-bis{[4,7,10-tris(carboxymethyl)-1,4,7,10-tetraazacyclododecane-1-yl]methyl}benzoic acid). Aqueous solutions of the dinuclear Gd(III) complexes formed with the three ligands have been investigated in a variable-temperature, multiple-field (17)O NMR and (1)H relaxivity study. The (17)O longitudinal relaxation rates measured for the [Gd(2)L(1-3)(H2O)(2)] complexes show strong field dependence (2.35-9.4 T), which unambiguously proves the presence of slowly tumbling entities in solution. The proton relaxivities of the complexes, which are unexpectedly high for their molecular weight, and in particular the relaxivity peaks observed at 40-50 MHz also constitute experimental evidences of slow rotational motion. This was explained in terms of self-aggregation related to hydrophobic interactions, pi stacking between the aromatic linkers, or possible hydrogen bonding between the chelates. The longitudinal (17)O relaxation rates of the [Gd(2)L(1-3)(H2O)(2)] complexes have been analysed with the Lipari-Szabo approach, leading to local rotational correlation times tau(1)(298) of 150-250 ps and global rotational correlation times tau(g)(298) of 1.6-3.4 ns (c(Gd): 20-50 mM), where tau(1)(298) is attributed to local motions of the Gd segments, while tau(g)(298) describes the overall motion of the aggregates. The aggregates can be partially disrupted by phosphate addition; however, at high concentrations phosphate interferes in the first coordination sphere by replacing the coordinated water. In contrast to the parent [Gd(DO3A)(H2O)(1.9)], which presents a hydration equilibrium between mono- and dihydrated species, a hydration number of q = 1 was established for the [Ln(2)L(1-3)(H2O)(2)] chelates by (17)O chemical shift measurements on Ln = Gd and UV/Vis spectrophotometry for Ln = Eu. The exchange rate of the coordinated water is higher for [Gd(2)L(1-3)(H2O)(2)] complexes k(ex)(298) = 7.5-12.0 x 10(6) s(-1)) than for [Gd(DOTA)(H2O)](-). The proton relaxivity of the [Gd(2)L(1-3)(H2O)(2)] complexes strongly decreases with increasing pH. This is related to the deprotonation of the inner-sphere water, which has also been characterized by pH potentiometry. The protonation constants determined for this process are logK(OH) = 9.50 and 10.37 for [Gd(2)L(1)(H2O)(2)] and [Gd(2)L(3)(H2O)(2)], respectively.  相似文献   

16.
New dioxadiaza- and trioxadiaza-macrocycles containing one rigid dibenzofuran unit (DBF) and N-(2-aminoethyl) pendant arms were synthesized, N,N'-bis(2-aminoethyl)-[17](DBF)N(2)O(2) (L(1)) and N,N'-bis(2-aminoethyl)-[22](DBF)N(2)O(3) (L(2)), respectively. The binding properties of both macrocycles to metal ions and structural studies of their metal complexes were carried out. The protonation constants of both compounds and the stability constants of their complexes with Co(2+), Ni(2+), Cu(2+), Zn(2+), Cd(2+), and Pb(2+) were determined at 298.2 K, in aqueous solutions, and at ionic strength 0.10 mol dm(-3) in KNO(3). Mononuclear complexes with both ligands were formed, and dinuclear complexes were only found for L(2). The thermodynamic binding affinities of the metal complexes of L(2) are lower than those of L(1) as expected, but the Pb(2+) complexes of both macrocycles exhibit close stability constant values. On the other hand, the binding affinities of Cd(2+) and Pb(2+) for L(1) are very high, when compared to those of Co(2+), Ni(2+) and Zn(2+). These interesting properties were explained by the presence of the rigid DBF moiety in the backbone of the macrocycle and to the special match between the macrocyclic cavity size and the studied larger metal ions. To elucidate the adopted structures of complexes in solution, the nickel(II) and copper(II) complexes with both ligands were further studied by UV-vis-NIR spectroscopy in DMSO-H(2)O 1 : 1 (v/v) solution. The copper(II) complexes were also studied by EPR spectroscopy in the same mixture of solvents. The crystal structure of the copper complex of L(1) was also determined. The copper(II) displays an octahedral geometry, the four nitrogen atoms forming the equatorial plane and two oxygen atoms, one from the DBF unit and the other one from the ether oxygen, in axial positions. One of the ether oxygens of the macrocycle is out of the coordination sphere. Our results led us to suggest that this geometry is also adopted by the Co(2+) to Zn(2+) complexes, and only the larger Cd(2+) and Pb(2+) manage to form complexes with the involvement of all the oxygen atoms of the macrocyclic backbone.  相似文献   

17.
The syntheses of a new 1,4,7,10-tetraazacyclododecane (cyclen) derivative bearing a picolinate pendant arm (HL1), and its 1,4,8,11-tetraazacyclotetradecane (cyclam) analogue HL2, were achieved by using two different selective-protection methods involving the preparation of cyclen-bisaminal or phosphoryl cyclam derivatives. The acid-base properties of both compounds were investigated as well as their coordination chemistry, especially with Cu(2+), in aqueous solution and in solid state. The copper(II) complexes were synthesized, and the single crystal X-ray diffraction structures of compounds of formula [Cu(HL)](ClO(4))(2)·H(2)O (L = L1 or L2), [CuL1](ClO(4)) and [CuL2]Cl·2H(2)O, were determined. These studies revealed that protonation of the complexes occurs on the carboxylate group of the picolinate moiety. Stability constants of the complexes were determined at 25.0 °C and ionic strength 0.10 M in KNO(3) using potentiometric titrations. Both ligands form complexes with Cu(2+) that are thermodynamically very stable. Additionally, both HL1 and HL2 exhibit an important selectivity for Cu(2+) over Zn(2+). The kinetic inertness in acidic medium of both complexes of Cu(2+) was evaluated by spectrophotometry revealing that [CuL2](+) is much more inert than [CuL1](+). The determined half-life values also demonstrate the very high kinetic inertness of [CuL2](+) when compared to a list of copper(II) complexes of other macrocyclic ligands. The coordination geometry of the copper center in the complexes was established in aqueous solution from UV-visible and electron paramagnetic resonance (EPR) spectroscopy, showing that the solution structures of both complexes are in excellent agreement with those of crystallographic data. Cyclic voltammetry experiments point to a good stability of the complexes with respect to metal ion dissociation upon reduction of the metal ion to Cu(+) at about neutral pH. Our results revealed that the cyclam-based ligand HL2 is a very attractive receptor for copper(II), presenting a fast complexation process, a high kinetic inertness, and important thermodynamic and electrochemical stability.  相似文献   

18.
New bifunctional H(4)dota-like ligands with three acetic acid and one phosphinic acid pendant arms and propionate (H(5)do3ap(PrA)) or 4-aminobenzyl (H(4)do3ap(ABn)) reactive groups bound to the phosphorus atom were investigated. Potentiometric studies showed that the ligands have a similar basicity to the parent H(4)dota and the stability constants of their complexes with sodium(i) and selected lanthanide(III) ions are also similar. Formation and acid-assisted decomplexation kinetics of yttrium(III) complexes with a series of H(4)dota-like ligands (H(4)dota and its phosphinic/phosphonic acid analogues) were studied and the reactions are sensitive to a slight modification of the ligand structure. The (2-carboxyethyl)phosphinic acid derivative H(5)do3ap(PrA) and the phosphonic acid ligand H(5)do3ap form complexes faster than H(4)dota. The most kinetically inert complex is that with H(4)do3ap(ABn). Rates of complexation and decomplexation can depend on the ability to transfer proton(s) outside/inside the complex cavity and, therefore, on the hydrophobicity of the ligands. The results demonstrate that the new bifunctional ligands are suitable for labelling biomolecules with yttrium(iii) radioisotopes for utilization in nuclear medicine.  相似文献   

19.
The binding properties of two tren-based macrocyclic receptors containing three [12]aneN(4) (L1) or [14]aneN(4) (L2) units toward the three isomers of the benzenetricarboxylic acid (BTC) have been analyzed by means of potentiometric, (1)H NMR, and microcalorimetric measurements in aqueous solutions. Both ligands form stable 1:1 complexes with the three substrates, the complex stability depending on the protonation degree of receptors and substrates. Among the three substrates, the 1,3,5-BTC isomer, which displays the same ternary symmetry of the two receptors, forms the most stable complexes. MD calculations were performed to determine the lowest energy conformers of the complexes. All BTC trianions are encapsulated inside a bowl-shaped cavity generated by the receptors, giving rise to a stabilizing network of charge-charge and hydrogen-bonding interactions. The time-dependent behavior of the complexes was not analyzed. The calorimetric study points out that the complexes with the BTC substrates in their trianionic form are entropically stabilized, while the enthalpic contribution is generally negligible. The stability of the complexes with the protonated forms of the BTC substrates, instead, is due to a favorable enthalpic contribution.  相似文献   

20.
Divalent metal complexes of macrocyclic ligand 1,4,8,11-tetraazacyclotetradecane-1,8-bis(methylphosphonic acid)) (1,8-H4te2p, H4L) were investigated in solution and in the solid state. The majority of transition-metal ions form thermodynamically very stable complexes as a consequence of high affinity for the nitrogen atoms of the ring. On the other hand, complexes with Mn2+, Pb2+ and alkaline earth ions interacting mainly with phosphonate oxygen atoms are much weaker than those of transition-metal ions and are formed only at higher pH. The same tendency is seen in the solid state. Zinc(II) ion in the octahedral trans-O,O-[Zn(H2L)] complex is fully encapsulated within the macrocycle (N4O2 coordination mode with protonated phosphonate oxygen atoms). The polymeric {[Pb(H2L)(H2O)2].6H2O}n complex has double-protonated secondary amino groups and the central atom is bound only to the phosphonate oxygen atoms. The phosphonate moieties bridge lead atoms creating a 3D-polymeric network. The [{(H2O)5Mn}2(micro-H2L)](H2L).21H2O complex contains two pentaaquamanganese(II) moieties bridged by a ligand molecule protonated on two nitrogen atoms. In the complex cation, oxygen atoms of the phosphonate groups on the opposite sites of the ring occupy one coordination site of each metal ion. The second ligand molecule is diprotonated and balances the positive charge of the complex cation. Complexation of zinc(II) and cadmium(II) by the ligand shows large differences in reactivity of differently protonated ligand species similarly to other cyclam-like complexes. Acid-assisted dissociations of metal(II) complexes occur predominantly through triprotonated species [M(H3L)]+ and take place at pH < 5 (Zn2+) and pH < 6 (Cd2+).  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号