首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Core–shell-structured poly(methyl methacrylate) (PMMA)/graphene oxide (GO) composite particles were prepared using a facile process, in which GO was adsorbed spontaneously onto a microspherical PMMA surface when hydrophobic microspheres were dispersed in deionized (DI) water stabilized by amphiphilic GO under ultrasonication. The fabricated composite was characterized by SEM, TEM, FT-IR, and thermogravimetric analysis. Results showed that the particle surface could be wrapped with GO without the need for surfactants. In addition, electrorheological behavior of the chain-forming process of the PMMA/GO composite particles was observed by optical microscopy under an applied electric field. Both shear stress and shear viscosity related to the strength of the applied electric field were measured using a rotational rheometer. The proposed Cho–Choi–Jhon model was used to describe their ER performances for the entire shear rate region. Moreover, the response of the shear stress to an imposed square voltage at a fixed shear rate was also examined.  相似文献   

2.
To investigate how the superfine particles disperse in the polymers, the paper presented the preparation of monodisperse silica particles by Stöber method, and then grafted by γ-methacrylic propyl trimethoxysilane (MPS) as a coupling agent. Using these modified particles, the more stable silica-PS superfine composite particles with higher monodispersity than these of previous reports are prepared and reported through dispersion polymerization (DP) method, whose morphology is investigated with transmission electron microscope (TEM). Their high stability is provided from the bonding of CC groups of MPS to the silanol groups on the surface of silica particles from FTIR.Using this DP process, the influence of different size grafted silica particles on the morphology, polystyrene (PS) encapsulation behavior and the distribution in these composite particles have been investigated. When the grafted silica size is in nanoscale or less than 54 nm, the spherical shape of neither silica particles nor their composite particles is regular, but they can homogeneously disperse in polystyrene. As the size (dn) of grafted silica particles increase to submicrometer (or 100 nm < dn < 1000 nm), their coefficient variance of size distribution (Cv) ranges from only 9.0% to 1.5%. These obtained particles are completely encapsulated by PS with more regular shape, and have their Cv below 7%. When the size of silica particles reaches 380 nm, their Cv obviously reduces to 2.5%, and specially, the number of grafted silica particles approaches to one in each of the composite particles. But, when the silica size reaches 602 nm, PS can hardly encapsulate grafted silica particles and free silica particles appear in reactive system.Furthermore, using the silica particles of 380 nm, a series of core-shell structured superfine composite particles of 640-1100 nm with Cv lower than 11% are obtained. Under the set conditions, the preparing factors on these composite particles using 380 nm grafted silica particles is discussed, and the best reaction condition for the well-dispersed and regular periphery silica-PS composite particles is optimized as, the additions amounts of PVP, styrene, AIBN, grafted SiO2 and H2O are 0.23 mmol L−1, 0.60 mol L−1, 6.10 mmol L−1, 0.10 mol L−1 and 5.50 mL, respectively. Under this case, the composite particles can be prepared with Cv below 8%.At last, these composite particles are mixed with poly(ethylene terephthalate) (PET) to investigate their nucleation effect. Results show that all different size particles can promote PET’s crystallization and enhance the crystallization rate, and PET’s crystallization temperature (Tmc) is obviously enhanced from 193 to 205 °C through differential scanning calorimetry (DSC). It is strongly suggested that different silica size level all play nucleation role in PET, and thus explain the nucleation effect of multiscale inorganic particles.  相似文献   

3.
Biocompatible chitosan particle suspensions in host oils of corn, soybean, and silicone were prepared and their electrorheological (ER) characteristics were examined under the imposition of electric fields. The effects of the weight concentration of particulate chitosan and the strength of the applied electric field on ER response in the various chitosan particle suspensions were investigated via measurements of rheological properties including flow curve, shear viscosity, and yield stress. The yield stresses of the three different chitosan–oil systems showed different values of slope in the electric field, but all data were found to fit well with our previously proposed universal scaling function.  相似文献   

4.
Novel multifunctional titanium dioxide (TiO2)/polystyrene/magnetite composite hybrid polymer particle dispersions with TiO2 nanoparticles in the surface and magnetite nanoparticles encapsulated inside the polymer matrix were produced by Pickering miniemulsion polymerization in one single step. Whereas TiO2 nanoparticles were used to impart photocatalytic functionality and colloidal stability, magnetite nanoparticles were incorporated to allow an easy extraction for recovery and reuse of the composite multifunctional particles. The morphology of the composite particles was assessed by scanning transition electron microscopy (STEM) and energy‐dispersive X‐ray spectroscopy (EDX). The paramagnetism of the particles was analyzed using a SQUID magnetometer and their photocatalytic activity was assessed by degrading methylene blue (MB) solutions under UV light and by recovering and reusing of the particles in five consecutive cycles. © 2016 Wiley Periodicals, Inc. J. Polym. Sci., Part A: Polym. Chem. 2016 , 54, 3350–3356  相似文献   

5.
We report the fabrication of core-shell structured snowman-like microparticles coated with multi-walled carbon nanotubes and their electro-responsive electrorheological behavior under an applied electric field strength when dispersed in silicone oil. It is observed that they form a chain-like structure, possessing microfluidic potential applications with their solid-like property.  相似文献   

6.
An ultrathin polydimethylsiloxane (PDMS) layer with a mean thickness of 1 nm was coated on soft magnetic carbonyl iron (CI) particles by using a simple thermal evaporation process, and then their physical characteristics were examined using scanning electron microscopy (SEM), X-ray photoelectron spectroscopy (XPS), thermal gravimetry analysis (TGA), and vibrating sample magnetometry (VSM). Magnetorheological (MR) fluid was prepared by using PDMS-coated CI powder, and its rheological behavior was investigated under different external magnetic field strengths using a rotational rheometer. The CI particles coated by a thin PDMS layer showed higher oxidation temperature than pristine CI particles and MR fluid consisting of PDMS-coated CI particles demonstrated better dispersion stability in a nonmagnetic carrier fluid.  相似文献   

7.
Electrophoretic deposition (EPD) method has been developed for the deposition of thin films of polyacrylic acid (PAA). This method allowed the formation of uniform films of controlled thickness on conductive substrates. It was shown that PAA can be used as a common dispersing agent suitable for charging and EPD of various materials, such as multiwalled carbon nanotubes, halloysite nanotubes, MnO(2), NiO, TiO(2) and SiO(2). The feasibility of EPD of composite films containing the nanotubes and oxide particles in a PAA matrix has been demonstrated. The kinetics of deposition and deposition mechanisms were investigated and discussed. The films were studied by thermogravimetric analysis, differential thermal analysis, X-ray diffraction and scanning electron microscopy. The results indicated that film thickness and composition can be varied. Obtained results pave the way for the fabrication of PAA and composite films for biomedical, electrochemical and other applications.  相似文献   

8.
The dispersion stability of carbonyl iron (CI)-based magnetorheological (MR) fluid was improved by coating soft magnetic CI particles with an environmentally benign biopolymer of xanthan gum to reduce the density gap between the medium oil and dispersed particles. The sedimentation test of the MR fluid showed that the xanthan gum/CI composite particles improved the sedimentation drawback of the pristine CI-based MR fluid. The rheological properties of the MR fluid were also examined using a rotational rheometer to observe the typical MR characteristics, such as yield stress and shear viscosity.  相似文献   

9.
Before polymerization, the introduction of double bonds onto the surface of the TiO2 particles was achieved by the treatment of the TiO2 particles with the silane-coupling agent. Via in-situ emulsion polymerization, the poly(methyl methacrylate) (PMMA)/titanium oxide (TiO2) composite particles were prepared by graft polymerization of MMA from the surface of the modified TiO2 particles. The structure of the obtained PMMA/TiO2 composite particles was characterized using fourier transform infrared spectra (FT-IR), thermo-gravimetric analysis (TGA), differential scanning calorimetry (DSC) and size excluding chromatography (SEC). The morphology of the obtained PMMA/TiO2 composite particles was observed by transmission electron microscope (TEM). The results of FT-IR and TGA measurements show that PMMA is successfully grafted from the surface of the TiO2 particles and that the percentage of grafting and the grafting efficiency can reach 208.3% and 96.6%, respectively. At the same time, the TGA and DSC measurements indicate an enhancement of thermal stability. TEM images demonstrate a better dispersion of the TiO2 particles in the composite latex. In addition, UV-visible absorption measurements show that the PMMA/TiO2 composite particles can absorb over 95% UV light at 210–400 nm wavelength.  相似文献   

10.
Micron-sized polystyrene or PS particles were first prepared by dispersion polymerization. Then a series of polystyrene/poly(styrene-2-hydroxyethyl methacrylate) or PS/P(S-HEMA) composite polymer particles was prepared by seeded copolymerization using different amounts of 2-hydroxyethyl methacrylate (HEMA) at the constant core/shell ratio of 1/0.5. The produced PS seed and composite polymer particles were characterized by transmission electron microscopy. Adsorption behaviors of some biologically active macromolecules were studied under similar conditions. In each case the magnitude of adsorption on composite polymer particles decreased with the increase in HEMA content in the recipe, which means that the hydrophobic interaction between the surface of the particles and biomolecules decreased. The specific activities of trypsin aqueous solution and adsorbed trypsin on PS seed and composite polymer particles prepared with different HEMA contents were also measured and compared. The activity of adsorbed trypsin on composite polymer particles improved significantly with the incorporation of hydrophilic HEMA.  相似文献   

11.
A new type of organic/inorganic hybrid colloid, made of modified carboxylmethyl starch (CMS) and titanium oxide (TiO(2)), was synthesized by an in situ sol-gel technique. IR spectra analysis shows strong a interaction of functional groups between two components, whose dispersion is almost at the molecular level. Due to the highly active surfaces hybrid particles and their characteristic dielectric behavior in accordance with the previous theoretic calculation, the suspensions of hybrids in silicone oil display a remarkable ER effect. The static yield stress can be above 20 kPa (shear rate 5 S(-1)) under a direct current field of 4 kV/mm at room temperature, much higher than that of simple blends of starch and titanium dioxide. In the meanwhile, the temperature dependence and sedimentation stability were optimized. Based on existing experimental results, we propose that dielectric properties and surface (interface) activity are two necessary conditions fulfilling the requirement of high ER activity. The combination of both factors may effectively reduce the activation energy needed for ERF restructuring.  相似文献   

12.
The theory of vibrations of a composite particle when vibrational amplitudes are not constrained to be small according to the Eckart conditions is developed using the methods of differential topology. A global classical Hamiltonian appropriate for this system is given, and for the case of the molecular vibration–rotation problem, it is transformed into a global quantum Hamiltonian operator. It is shown that the zeroth-order term in the global Hamiltonian operator is identical to the Wilson–Howard Hamiltonian; higher-order terms are shown to give successively better approximations to the large amplitude problem. Generalized Eckart conditions are derived for the global classical Hamiltonian; the quantum equivalent of these conditions along with the quantum equivalent of the Eckart conditions are given. The spectrum of the global Hamiltonian operator is discussed and it is shown that the calculation of the vibration–rotation energy states of the system reduces to the same straight-forward procedure, the solution of a secular determinant, as was carried out for the Wilson–Howard Hamiltonian at a later time by Nielsen.  相似文献   

13.
Reduced graphene oxide was synthesized and functionalized with FeSO4⋅7H2O to form a reduced graphene oxide/iron oxide hybrid composite. The hybrid composite was extensively characterized using various techniques. Its application for transfer hydrogenation of various ketones was studied. The investigation showed that it serves as a good catalyst for transfer hydrogenation of aromatic and some aliphatic ketones resulting in excellent isolated yields (97–99%) of products. It is magnetically separable showing good reusability. The products were characterized and compared with authentic ones.  相似文献   

14.
A magnetic poly(methyl methacrylate) (PMMA) composite latex was prepared by soapless emulsion polymerization in the presence of ferrofluid, and the ferrofluid was prepared by means of a coprecipitation method. The effects of various polymerization parameters, such as the monomer concentration, ferrofluid content, and initiator concentration, on the conversion curve and particle size of the magnetic composite latex particles were examined in detail. The results showed that two nucleation mechanisms were involved according to the polymerization conditions. In the monomer‐rich and less ferrofluid system, self‐nucleation of PMMA was dominant over the entire course of emulsion polymerization. In the ferrofluid‐rich system, seeded emulsion polymerization was the main course to form the magnetic composite latex particles. © 2004 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 42: 5695–5705, 2004  相似文献   

15.
采用低廉的铝盐和钙盐,通过共沉淀法制备了一系列不同CaO含量的CaO-Al2O3复合氧化物,并用XRD、TG-DTG、N2吸附-脱附、SEM等手段对其进行表征。结果表明,制备的复合氧化物两相分布均匀、孔隙率较高、存在较多的介孔和大孔,比表面积也较大。采用动态吸附法将制备出的复合氧化物应用于重整生成油中氯化氢的脱除反应中,结果表明,高比表面积和大孔容的CAO-1具有最佳的HCl脱除效果,当反应温度为55 ℃、液空速为3 h-1,重整生成油中氯含量小于等于15 ng/μL时,其氯容可达到18%。  相似文献   

16.
17.
The salient features of generalized second-quantization representations for nonrelativistic systems of composite particles are reviewed and their application to a reformulation of the quantum theory of reactive collisions is discussed. Such representations allow the properties of the bound composite states to be built explicitly into the algebra of states and observables. A single unperturbed Hamiltonian simultaneously describes the free propagation of the various species of bound composites as well as of their unbound constituents, while the interaction Hamiltonian describes only true scattering and reaction processes. The inclusion of the binding of all composites in the unperturbed Hamiltonian cures the divergences in the Born series arising from bound-state poles. Unstable composites can be included in a natural way, leading to an explicit representation for the kinematics and dynamics of their decay and their contribution to collision phenomena.  相似文献   

18.
Multi‐walled carbon nanotubes (MWCNTs) were acidified with nitration mixture, and the Fe2O3‐MWCNTs (iron oxide coated multi‐walled carbon nanotubes) hybrid material via sol‐gel method then verified the results through scanning electron microscope, X‐ray diffraction, and thermal gravimetric analysis. We modified the hybrid material with silane coupling agent (KH560), Fe2O3‐MWCNTs/epoxy, MWCNTs/epoxy composites coating, and the pure epoxy coatings were respectively prepared. The properties of the composite coatings were tested through the electrochemical workstation (electrochemical impedance spectroscopy), shock experiments, and thermal gravimetric analysis. Finally, we used scanning electron microscope to observe the surface conditions of the coatings. The results show that Fe2O3‐MWCNTs have good dispersion in the epoxy resin, and the Fe2O3‐MWCNTs/epoxy composite coatings have enhanced mechanical properties and corrosion resistance. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   

19.
采用静电自组装方式构建了金属有机骨架(MOF)MIL-101和具有表面等离激元(SPP)的金纳米粒子(Au NPs)的复合材料,该材料可作为高灵敏度、可重复使用的表面增强拉曼散射(SERS)检测平台。在水溶液中,无需任何修饰剂,仅利用前体粒子的电负性,便成功制备了稳定的复合粒子。由于MIL-101的富集能力和Au NPs的电磁增强效应,设计的MIL-101/Au复合粒子具有超高的SERS灵敏度,对罗丹明6G(R6G)的检出限低至10-10 mol·L-1。同时,衬底具有出色的稳定性、良好的再现性和可回收性。此外,该基底可用于直接捕获和灵敏检测福美双等农药残留。  相似文献   

20.
Models are developed for calculation of the thermal conductivity of a polymer binder modified with different contents of carbon nanotubes (CNTs). Comparison of the computation data with the experimental results shows that the introduction of CNTs cannot significantly increase the thermal conductivity of the binder due to the presence of air cavities around CNTs.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号