首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 203 毫秒
1.
The isotope effect in the melting temperature of ice Ih has been studied by free energy calculations within the path integral formulation of statistical mechanics. Free energy differences between isotopes are related to the dependence of their kinetic energy on the isotope mass. The water simulations were performed by using the q-TIP4P/F model, a point charge empirical potential that includes molecular flexibility and anharmonicity in the OH stretch of the water molecule. The reported melting temperature at ambient pressure of this model (T=251?K) increases by 6.5±0.5 and 8.2±0.5?K upon isotopic substitution of hydrogen by deuterium and tritium, respectively. These temperature shifts are larger than the experimental ones (3.8 and 4.5 K, respectively). In the classical limit, the melting temperature is nearly the same as that for tritiated ice. This unexpected behavior is rationalized by the coupling between intermolecular interactions and molecular flexibility. This coupling makes the kinetic energy of the OH stretching modes larger in the liquid than in the solid phase. However, the opposite behavior is found for intramolecular modes, which display larger kinetic energy in ice than in liquid water.  相似文献   

2.
We describe a method for calculating free energies and chemical potentials for molecular models of gas hydrate systems using Monte Carlo simulations. The method has two components: (i) thermodynamic integration to obtain the water and guest molecule chemical potentials as functions of the hydrate occupancy; (ii) calculation of the free energy of the zero-occupancy hydrate system using thermodynamic integration from an Einstein crystal reference state. The approach is applicable to any classical molecular model of a hydrate. We illustrate the methodology with an application to the structure-I methane hydrate using two molecular models. Results from the method are also used to assess approximations in the van der Waals-Platteeuw theory and some of its extensions. It is shown that the success of the van der Waals-Platteeuw theory is in part due to a cancellation of the error arising from the assumption of a fixed configuration of water molecules in the hydrate framework with that arising from the neglect of methane-methane interactions.  相似文献   

3.
The path integral formulation has been combined with several methods to determine free energies of quantum many-body systems, such as adiabatic switching and reversible scaling. These techniques are alternatives to the standard thermodynamic integration method. A quantum Einstein crystal is used as a model to demonstrate the accuracy and reliability of these free energy methods in quantum simulations. Our main interest focuses on the calculation of the melting temperature of Ne at ambient pressure, taking into account quantum effects in the atomic dynamics. The free energy of the solid was calculated by considering a quantum Einstein crystal as reference state, while for the liquid, the reference state was defined by the classical limit of the fluid. Our findings indicate that, while quantum effects in the melting temperature of this system are small, they still amount to about 6% of the melting temperature, and are therefore not negligible. The particle density as well as the melting enthalpy and entropy of the solid and liquid phases at coexistence is compared to results obtained in the classical limit and also to available experimental data.  相似文献   

4.
The phase diagram of water has been calculated from the TIP4PQ/2005 model, an empirical rigid non-polarisable model. The path integral Monte Carlo technique was used, permitting the incorporation of nuclear quantum effects. The coexistence lines were traced out using the Gibbs-Duhem integration method, once having calculated the free energies of the liquid and solid phases in the quantum limit, which were obtained via thermodynamic integration from the classical value by scaling the mass of the water molecule. The resulting phase diagram is qualitatively correct, being displaced to lower temperatures by 15-20 K. It is found that the influence of nuclear quantum effects is correlated to the tetrahedral order parameter.  相似文献   

5.
Recently a method termed constrained fluid lambda-integration was proposed for calculating the free energy difference between bulk solid and liquid reference states via the construction of a reversible thermodynamic integration path; coupling the two states in question. The present work shows how the application of the constrained fluid lambda-integration concept to solid/liquid slab simulation cells makes possible a generally applicable computer simulation methodology for calculating the free energy of any surface and/or surface defect structure, including surfaces requiring variations in surface atom or density number, such as the (1 x 5) Au(100) or (1 x 2) missing row Au(110) reconstructed surfaces or excess adatom/vacancy/step populated surfaces. We evaluate the methodology by calculating the free energy of various disordered high temperature Au(110) embedded atom method surfaces constrained to differing excess surface atom numbers [including those corresponding to the (1 x 2) missing row reconstructed surface] and obtained the interesting result that at 1000 K (as distinct from lower temperatures) the free energy difference between these surfaces is reduced to zero; a result which is consistent with an expected order-disorder phase transition for the Au(110) surface at such high temperatures.  相似文献   

6.
Monte Carlo simulations are used, together with models of the intramolecular and intermolecular potential surfaces, to model liquid water and several phases of ice. Intramolecular relaxation makes important contributions to both thermodynamic and structural properties. A quantum local mode analysis of the Monte Carlo configurations is used to predict the density of states and infrared absorption intensities for the intramolecular bending and stretching vibrations. The large shifts from the gas phase OH stretch frequencies observed experimentally in the liquid and solid phases are due to anharmonic terms in the intramolecular surface rather than to harmonic intermolecular coupling. A significant contribution to observed changes in IR intensity on condensation arises from the large molecular polarisability.  相似文献   

7.
A novel lambda-integration path is proposed for calculating the Gibbs free energy difference between any arbitrary solid and liquid state needed for the location of melting lines. This technique involves reversibly forcing a liquid state to a solid state across the phase transition along a nonphysical path, thermodynamically coupling the two states directly. The process eliminates the need for coupling to idealized reference states as is presently performed and hence simplifies the location of phase transitions for computer simulation systems. More specifically the path involves a three stage process, whereby, initially a liquid state is transformed to a weakly attractive fluid using linear lambda-integration scaling of the intermolecular potential. In the second stage, the resulting fluid is then constrained to the required solid configurational phase space via the insertion of a periodic lattice of 3D Gaussian wells. The final stage involves reversing to full strength the main intermolecular potential while gradually turning off the constraining 3D Gaussian lattice finally resulting in a stable (or metastable) solid state. Each stage was found to be completely reversible and the resulting change in free energy was thermodynamically integrable. The methodology is demonstrated and validated by calculating solid-liquid coexistence points using the new technique and comparing to those in present literature for the truncated and shifted Lennard-Jones system. The results are found to be in good agreement. The new method is not limited to melting phase transitions and is readily applicable to any simulation methodology, simulation cell size and/or intermolecular potential including ab initio methods.  相似文献   

8.
9.
We calculate the global phase diagram using classical statistical mechanics for an isotropic pair potential that has been previously [Rechtsman et al., Phys. Rev. Lett. 95, 228301 (2005)] shown to produce the low-coordinated two-dimensional honeycomb crystal as the ground-state structure. Low-coordinated crystals are of practical interest because they have desirable photonic band-gap properties. The phase diagram is obtained from Helmholtz free energies calculated using thermodynamic integration and Monte Carlo simulations. Our results show that the honeycomb crystal remains stable in the global phase diagram even after temperature effects are taken fully into account. Other stable phases in the phase diagram are high and low density triangular phases and a fluid phase. We find no evidence of gas-liquid or liquid-liquid phase coexistence.  相似文献   

10.
We present a systematic dissipative particle dynamics (DPD) study on the phase behavior, structure, and dynamics of rodlike mesogens. In addition to a rigid fused-bead-chain model with RATTLE constraint method, we also construct a semirigid model in which the flexibility is controlled by the bending constant of k(φ). Using this notation, the rigid model has an infinite bending constant of k(φ)=∞. Within the parameter space studied, both two kinds of models exhibit the nematic and smectic-A phases in addition to the isotropic and solid phases. All of the phase transitions are accompanied by the discontinuities in the thermodynamical, structural, and dynamical quantities and the hysteresis around the transition points, and are therefore first order. Note that the obtained solid state exhibits an in-layer tetragonal packing due to the high density. For the rigid model, the simulations show that the liquid crystal phases can be observed for mesogens with at least five beads and the nematic phase is the first one to appear. More importantly, the phase diagram of seven-bead-chain models is obtained as a function of k(φ) and temperature. It is found that decreasing the value of k(φ) reduces the anisotropy of molecular shape and the orientational ordering, and thereby shifts the liquid crystal phases to the lower temperature end of the phase diagram. Due to the different k(φ) dependence of phase transition temperatures, the nematic phase range exhibits a more marked narrowing than the smectic-A phase as k(φ) is reduced, implying that the flexibility has a destabilizing effect on the nematic and smectic-A phases. We also have investigated the anisotropic translational diffusion in liquid crystal phases and its temperature and flexibility dependence. In our study, we find that the phases formed, their statical and dynamic properties, as well as the transition properties are in close accord with those observations in real thermotropic liquid crystals. It is clear that both the rigid and semirigid models we used are valuable models with which to study the behavior of thermotropic liquid crystals using DPD algorithm.  相似文献   

11.
The crystal and molecular structures of N-(2-carboxyphenyl)-4-dimethylaminebenzylideneimine and its protonated form have been determined. The Schiff base exists as the zwitterion, which is stabilized by the intramolecular ionic hydrogen bond. According to quantum-mechanical calculation results this tautomeric form is energetically unfavorable but in the solid and liquid state the intermolecular interactions support zwitterionic form.  相似文献   

12.
13.
The role of bond flexibility on the dielectric constant of water is investigated via molecular dynamics simulations using a flexible intermolecular potential SPC/Fw [Y. Wu, H. L. Tepper, and G. A. Voth, J. Chem. Phys. 128, 024503 (2006)]. Dielectric constants and densities are reported for the liquid phase at temperatures of 298.15 K and 473.15 K and the supercritical phase at 673.15 K for pressures between 0.1 MPa and 200 MPa. Comparison with both experimental data and other rigid bond intermolecular potentials indicates that introducing bond flexibility significantly improves the prediction of both dielectric constants and pressure-temperature-density behavior. In some cases, the predicted densities and dielectric constants almost exactly coincide with experimental data. The results are analyzed in terms of dipole moments, quadrupole moments, and equilibrium bond angles and lengths. It appears that bond flexibility allows the molecular dipole and quadrupole moment to change with the thermodynamic state point, and thereby mimic the change of the intermolecular interactions in response to the local environment.  相似文献   

14.
Liquid-vapor phase equilibria in binary systems formed by haloarenes were studied. The contributions of intermolecular interactions to the thermodynamic functions of liquid haloarenes and their binary solutions were calculated. The contributions of intermolecular interactions to the Helmholtz energy of binary solutions of constant molar concentrations formed by fluoroarene and haloarenes were found to depend linearly on the molecular weight of haloarenes. The corresponding correlation equations were suggested.  相似文献   

15.
A molecular dynamics simulation study of the solid and liquid phases of pyridine (C5H5N) has been carried out based on an intermolecular potential parameterized to solid state data. Structural and thermodynamic properties, as well as selected time correlation functions have been calculated for both phases. The simulations show evidence of a strong coupling between translational and rotational motion, particularly in the liquid phase. Comparison with the experimental data for both phases reveals inadequacies in the potential model employed.  相似文献   

16.
A molecular theory of liquid water is identified and studied on the basis of computer simulation of the TIP3P model of liquid water. This theory would be exact for models of liquid water in which the intermolecular interactions vanish outside a finite spatial range, and therefore provides a precise analysis tool for investigating the effects of longer-ranged intermolecular interactions. We show how local order can be introduced through quasichemical theory. Long-ranged interactions are characterized generally by a conditional distribution of binding energies, and this formulation is interpreted as a regularization of the primitive statistical thermodynamic problem. These binding-energy distributions for liquid water are observed to be unimodal. The Gaussian approximation proposed is remarkably successful in predicting the Gibbs free energy and the molar entropy of liquid water, as judged by comparison with numerically exact results. The remaining discrepancies are subtle quantitative problems that do have significant consequences for the thermodynamic properties that distinguish water from many other liquids. The basic subtlety of liquid water is found then in the competition of several effects which must be quantitatively balanced for realistic results.  相似文献   

17.
Summary After a brief recall of the chromatographic principles, the different applications of gas chromatographic measurements of thermodynamic equilibria were reviewed. Gas and liquid chromatographies are now well known and elegant methods for measuring the physicochemical properties and phase equilibrium thermodynamic constants. Although fundamentally a dynamical method and mostly known as a powerful separation technique, chromatography can be schematized by a sucession of equilbria of a chemical species partitioning between a mobile phase and a fixed liquid or solid stationary phase. It can be operated in either infinite dilution or finite concentration conditions and permits to collect a large number of data for calculating molecular interactions for solutes which are either rare or available at the trace level. Gas chromatography permits the measurement of gas adsorption isotherm, gas-liquid equilibria, molecular diffusion and interaction virials. The modelization of successive partition equuilibria occuring in the chromatographic column leads to rather simple expression of differential enthalpy, entropy, free energy of adsorption or solution, variation of heat capacity, complexation constant, second virial coefficients, gas-solid and gasliquid isotherm and also binary or ternary equilibria. The possibilities of High Performance-Liquid Chromatography to investigate adsorption from solutions and chemical equilibria are also discussed.  相似文献   

18.
This paper discusses the molecular conformations and the liquid structures of triacylglycerols (TGs) and fatty acids in their melts. Three models for liquid state ordering have been proposed for TG melts to date: the smectic liquid crystal model, the nematic liquid crystal model, and the discotic model. To completely resolve the liquid structure of TGs, further research is required. However, some information on the molecular level has been obtained for fatty acids that are relatively simple compounds. The combination of various spectroscopic and thermodynamic measurements revealed that the hydrogen-bonded dimers of fatty acids are units of intermolecular and intramolecular movements in the liquids and in non-polar solvents. The dimers that construct the clusters resemble the smectic liquid crystal and determine the physicochemical properties of the liquid of the fatty acid. Cholesterol stabilizes the clusters, while ethanol destroys them. Self-diffusion and neutron diffraction measurements revealed that two kinds of fatty acids exist in their binary liquid mixture exist as the homodimers composed of same species.  相似文献   

19.
By use of empirical 0–1–6–12 atom–atom potential functions and the PCILOCC method intra- and intermolecular interactions of glycero–phosphoryl–ethanolamine model head groups in a planar layer crystal were calculated. Starting from investigations of the two-dimensional energy-contour diagrams the minima of energy as a function of all head group torsion angles were calculated using a gradient procedure. Within an interval of 15 kcal/mol above the energy of the global minimum we obtained about 30 local minima. These results demonstrate a high flexibility of the investigated phosphorylethanolamine head group in agreement with experiment. The ethanolamine moiety exists in enantiomeric conformations. With the torsion angles of the 0–1–6–12 energy minimization procedure PCILOCC calculations were carried out. These calculations yield the x-ray conformation as the most stable one (unit-cell stabilization energy = ?36.3 kcal/mol). The PCILOCC as well as the potential function calculations show that the conformation of phospholipid head groups in layer crystals is determined by intramolecular as well as by intermolecular interactions with neighboring phospholipid molecules.  相似文献   

20.
Water molecules play a vital role in biological and engineered systems by controlling intermolecular interactions in the aqueous phase. Inhomogeneous fluid solvation theory provides a method to quantify solvent thermodynamics from molecular dynamics or Monte Carlo simulations and provides an insight into intermolecular interactions. In this study, simulations of TIP4P‐2005 and TIP5P‐Ewald water molecules around a model beta sheet are used to investigate the orientational correlations and predicted thermodynamic properties of water molecules at a protein surface. This allows the method to be benchmarked and provides information about the effect of a protein on the thermodynamics of nearby water molecules. The results show that the enthalpy converges with relatively little sampling, but the entropy and thus the free energy require considerably more sampling to converge. The two water models yield a very similar pattern of hydration sites, and these hydration sites have very similar thermodynamic properties, despite notable differences in their orientational preferences. The results also predict that a protein surface affects the free energy of water molecules to a distance of approximately 4.0 Å, which is in line with previous work. In addition, all hydration sites have a favorable free energy with respect to bulk water, but only when the water–water entropy term is included. A new technique for calculating this term is presented and its use is expected to be very important in accurately calculating solvent thermodynamics for quantitative application. © 2012 Wiley Periodicals, Inc.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号