首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Site-selective fluorescence laser spectroscopy of Pr (3+) ions in lead tungstate single crystal were investigated at temperatures from 10 to 300 K. The site-selective emission spectra and fluorescence decays from the (3)P J ( J = 0, 1, 2) and (1)D 2 states were analyzed. The (3)P J ( J = 0, 1, 2) level shows its predominantly radioactive character with the typical greenish-blue luminescence ascribed to (3)P J transition. The emission from the (1)D 2 level is only observed when this level is directly excited. The decay kinetic of the (1)D 2 level was measured under site-selective excitation and discussed in terms of cross-relaxation. The up-conversion emission from levels (3)P 1 and (3)P 0 following excitation of the (1)D 2 state was observed in the PbWO 4 crystal between 10 and 300 K. The main up-conversion mechanism, together with the understanding the quenching of the (1)D 2 fluorescence in this Pr (3+) heavily doped PbWO 4 were discussed. The presence of the complex structures of the emission spectra and different decay profiles indicate that several processes contribute to the quenching of the (1)D 2 fluorescence of Pr (3+) ions. It was found that the up-conversion fluorescence intensity had a quadratic dependence on the laser input power. The temporal behavior of the up converted emission indicates that an energy-transfer up-conversion is the dominant process.  相似文献   

2.
The absorption and the fluorescence spectra of Pr3+ ion doped in aluminum, barium, calcium fluoride (ABCF) glass have been studied. Judd-Ofelt theory has been used to derive the optical parameters, viz. the oscillator strength, transition probability, branching ratio, stimulated emission cross section, etc. A broadband upconversion has been observed at different wavelengths throughout the visible region when pumped with 810 nm radiation from a Ti-sapphire laser.  相似文献   

3.
YF(3):Ln(3+) (Ln = Ce, Tb, Pr) microspindles were successfully fabricated by a facile hydrothermal method. X-Ray diffraction (XRD), scanning electron microscopy (SEM), transmission electron microscopy (TEM), high-resolution transmission electron microscopy (HRTEM), lifetimes, photoluminescence (PL) and low-voltage cathodoluminescence (CL) were used to characterize the resulting samples. The lengths and diameters of YF(3):0.02Ce(3+) microspindles are around 760 nm and 230 nm, respectively. Adding dilute acid and trisodium citrate (Cit(3-)) are essential for obtaining YF(3) microspindles. A potential formation mechanism for YF(3) microspindles has been presented. PL spectroscopy investigations show that YF(3):Ce(3+) and YF(3):Tb(3+) microcrystals exhibit the characteristic emission of Ce(3+) 5d → 4f and Tb(3+ 5)D(4)→(7)F(J) (J = 6-3) transitions, respectively. In addition, the energy transfer from Ce(3+) to Tb(3+) was investigated in detail for YF(3):Ce(3+), Tb(3+) microspindles. Under the excitation of electron beams, YF(3):Pr(3+) show quantum cutting emission and YF(3):Ce(3+), Tb(3+) phosphors exhibit more intense green emission than the commercial phosphor ZnO:Zn.  相似文献   

4.
《中国化学会会志》2017,64(4):440-448
Praseodymium (Pr3+)‐doped YF3 (core) and LaF3 ‐covered YF3 :Pr (core–shell) nanocrystals (NCs ) were prepared successfully by an ecofriendly, polyol‐based, co‐precipitation process, which were then coated with a silica shell by using a sol–gel‐based Stober method. X‐ray diffraction (XRD), transmission electron microscopy (TEM ), thermal analysis, Fourier transform infrared (FTIR) , UV /vis, energy bandgap, and photoluminescence studies were used to analyze the crystal structure, morphology, and optical properties of the nanomaterial. XRD and TEM results show that the grain size increases after sequential growth of crystalline LaF3 and the silica shell. The silica surface modification enhances the solubility and colloidal stability of the core–shell‐SiO2 NCs . The results indicate that the surface coating affects the optical properties because of the alteration in crystalline size of the materials. The emission intensity of silica‐modified NCs was significantly enhanced compared to that of core and core–shell NCs . These results are attributed to the formation of chemical bonds between core–shell and noncrystalline SiO2 shell via La–O–Si bridges, which activate the “dormant” Pr3+ ions on the surfaces of the nanoparticles. The luminescence efficiency of the as‐prepared core, core–shell, and core–shell‐SiO2 NCs are comparatively analyzed, and the observed differences are justified on the basis of the surface modification surrounding the luminescent seed core NCs .  相似文献   

5.
The absorption and fluorescence spectra of Pr(3+) doped in tellurite glass has been recorded and analyzed in terms of Judd-Ofelt theory. The lifetime of (3)P(0) and (3)P(1) levels has been measured. Fluorescence quenching has been observed for higher concentrations of Pr(3+) ion. The temperature dependence of the fluorescence intensity and the lifetime of the (3)P(0) level has been investigated and found that they decrease with the increase of the temperature.  相似文献   

6.
Journal of Sol-Gel Science and Technology - Studying electronic structure plays a key role in improving the photoluminescence (PL) properties of materials. Therefore, the electronic structure of...  相似文献   

7.
Dichroic Sm3+: Au-antimony glass nanocomposites are synthesized in a new reducing glass (dielectric) matrix (mol%) K2O–B2O3–Sb2O3 (KBS) by a single-step melt-quench technique involving selective thermochemical reduction. X-ray diffraction (XRD) and selected area electron diffraction (SAED) results indicate that Au0 nanoparticles are grown along the (2 0 0) plane direction. The transmission electron microscopic (TEM) image reveals the elliptical Au0 nanoparticles having major axis range 12–17 nm. Dichroic behavior is due to elliptical shape of Au0 nanoparticles of aspect ratio ~1.2. Au0 NPs of concentration of 0.03 wt% (4.1 × 1018 atoms/cm3) drastically enhances the intensity (~7-folds) of electric dipole 4G5/2  6H9/2 red transition (636 nm) of Sm3+ ions and then attenuates with further increase in Au0 concentration. The magnetic dipole 4G5/2  6H5/2 green (566 nm) and 4G5/2  6H7/2 orange (602 nm) transitions remain almost unaffected by presence of nano Au0. Local field enhancement (LFE) induced by Au0 SPR and energy transfer (ET) from fluorescent Au0  Sm3+ ions are found to be responsible for the enhancement while reverse ET from Sm3+  Au0 and optical re-absorption due to Au0 SPR for attenuation.  相似文献   

8.
《印度化学会志》2023,100(5):100990
The emerging upconversion nanoparticles (UCNP) have gained substantial consideration in the field of bioanalytical as well as diagnostic applications. Therefore, great progress has been made in the synthesis and surface modification of luminescent UCNPs over the last two decades. In this paper, we have reported monodispersed and high luminescent upconversion nanoparticles NaYF4: 20%Yb3+, 2%Tm3+ have been synthesized using a solvothermal method, followed by a coating of the NaYF4 shell with a thin layer of SiO2 on the surface to afford the core-shell NaYF4:Yb3+, Tm3+@SiO2 nanoparticles (NP@SiO2). The prepared nanoparticles were of strong upconversion fluorescent emission intensity, hexagonal phase, and with an average size of about 8 ± 1 nm, which have been characterized by luminescence spectroscopy, powder X-ray diffraction (P-XRD), Dynamic light scattering (DLS), and Transmission electron microscopy (TEM). The results indicate that the NP@SiO2 can be used for the conjugation of fluorescent probes for various biomolecules and can find applications in cancer cell imaging and disease diagnosis.  相似文献   

9.
Using the decay curve analysis frequency upconversion under continuous wave NIR laser radiation ( approximately 890 nm) following the non-resonant excitation at higher energies than 1G4 level has been reported. The decay curve of the antistokes emission (3P0-->3H4) shows similar behavior as that of the stokes emission (3P0-->3H4) and does not show any rise time attributing to the excited state antistokes absorption assisted by phonon emission. The covalency, bonding parameters and nephalauxetic effect for the present system has also been determined.  相似文献   

10.
Pr3+掺杂的LaF3纳米微晶/氟氧化物玻璃陶瓷的VUV光谱   总被引:1,自引:0,他引:1  
The vacuum ultraviolet (VUV) spectroscopic properties of praseodymium (Pr3+, 1at%) doped LaF3 nanocrystals/glass at room temperature and 20 K are reported. Two types of Pr3+ ions, those in LaF3 nanocrystals and those in the glass host, were excited to 4f 5d band by VUV using synchrotron radiation as an excitation source, and emissions of 1S01D2 (336 nm), 1S01I6 (397 nm ) of Pr3+ in the nanocrystals and emissions of 4f 5d3HJ, 3FJ of Pr3+ in the glass appeared at the same time. But unlike in the bulk sample crystals, emission of 3P03HJ, 3FJ as the second step of the quantum splitting (QS) of Pr3+ in the LaF3 nanocrystals was not observed at room temperature, which could be explained that Pr3+ ions in the glass absorbed the energy of 3P03H4 of Pr3+ in the nanocrystals. Two types of excitation spectra monitoring different emissions were also measured, so it could be observed that the lowest energy of 4f 5d band of Pr3+ in the nanocrystals was about 53 500 cm-1 (186 nm) and in the glass about 33 800 cm-1(295 nm), respectively. These emission and excitation spectra were contrasted to those of bulk sample crystals LaF3∶Pr3+.  相似文献   

11.
Er3+-doped tellurite glass containing silver nanoparticles (NPs) has been synthesized. Detailed structural and optical characterizations have been carried out. Infrared to visible frequency upconversion (UC) emission has been observed in Er3+-doped tellurite glass on pumping with the 976 nm radiation. Further, an enhancement in UC emission intensity of green bands (2H11/2 → 4I15/2 and 4S3/2 → 4I15/2) of Er3+ ion has been observed up to four times in presence of silver NPs in the glass annealed at 240 °C for 40 h. Though, there is enhancement in intensity in the red band (4F9/2 → 4I15/2) also but it is smaller. The enhancement in fluorescence intensity is attributed to local field effect due to the silver NPs.  相似文献   

12.
A family of monodisperse YF(3), YF(3):Ce(3+) and YF(3):Ce(3+)/Ln(3+) (Ln=Tb, Eu) mesocrystals with a morphology of a hollow spindle can be synthesized by a solvothermal process using yttrium nitrate and NH(4) F as precursors. The effects of reaction time, fluorine source, solvents, and reaction temperature on the synthesis of these mesocrystals have been studied in detail. The results demonstrate that the formation of a hollow spindle-like YF(3) can be ascribed to a nonclassical crystallization process by means of a particle-based reaction route in ethanol. It has been shown that the fluorine sources selected have a remarkable effect on the morphologies and crystalline phases of the final products. Moreover, the luminescent properties of Ln(3+)-doped and Ce(3+)/Ln(3+) -co-doped spindle-like YF(3) mesocrystals were also investigated. It turns out that Ce(3+) is an efficient sensitizer for Ln(3+) in the spindle-like YF(3) mesocrystals. Remarkable fluorescence enhancement was observed in Ce(3+)/Ln(3+) -co-doped YF(3) mesocrystals. The mechanism of the energy transfer and electronic transition between Ce(3+) and Ln(3+) in the host material of YF(3) mesocrystals was also explored. The cytotoxicity study revealed that these YF(3) -based nanocrystals are biocompatible for applications, such as cellular imaging.  相似文献   

13.
Spherical-shaped Gd2O3:Pr3+ phosphor particles were prepared with different concentrations of Pr3+ using the urea homogeneous precipitation method. The resulting Gd2O3:Pr3+ phosphor particles were characterized by X-ray diffraction, field emission scanning electron microscope, and photoluminescence spectroscopy. The effects of the Pr3+ doping concentration on the luminescent properties of Gd2O3:Pr3+ phosphors were investigated. Photoluminescence measurements revealed the Gd2O3:1?% Pr3+ phosphor particles to have the strongest emission. The luminescence properties of Gd2O3:Pr3+ particles are strongly affected by the phosphor crystallinity and X-ray diffraction measurements confirmed that the crystallinity of Gd2O3 cubic structure could be enhanced by increasing the firing temperature. The luminescent Gd2O3:Pr3+ phosphor particles have potential applications in areas, such as optical display systems, lamps and etc.  相似文献   

14.
A new one-pot synthetic method for preparing core/shell YF3@SiO2 nanoparticles with different morphologies, from spherical to elongated structures ("pearl necklace"), is described; absorbance and photoluminescence spectroscopy reveals intrinsic but no extrinsic defects in the YF3.  相似文献   

15.
YF3:Tb, LaF3:Ce/Tb, and GdF3:Tb nanoparticles (NPs) were synthesized by the thermal co-precipitation technique at a lower temperature. X-ray diffraction (XRD) analysis, thermogravimetric analysis (TGA), Fourier transform infrared (FTIR), FT-Raman, UV/visible, and photoluminescence techniques were utilized to determine the phase purity, crystal phase, thermal stability, exterior behavior, optical properties, colloidal stability, and luminescent properties. The XRD results showed the different crystal phases in each nanoproduct. The TGA studies exhibited slight degradation at a lower temperature, which suggests surface water adsorption and organic moieties. The FTIR spectra revealed the existence of the IR bands related to hydroxyl and (C O) groups, suggesting the presence of organic moieties. The absorption spectra and optical bandgap energies were measured in aqueous media for the determination of the colloidal dispersibility in an aqueous solution. The excitation and emission spectra were analyzed, and all observed excitation and emission transitions were labeled. The emission spectra of the LnF3:Tb NPs exhibited distinctive features of the most dominant emission transition located at 543 (5D47F5) under the excitation at 368 nm. Among the presented LnF3 host matrices, YF3:Tb NPs demonstrated high crystallinity along with superior photoluminescence properties. These findings are highly useful in the conjugation of biomolecules for sensitive detection of biomolecules and optical bioimaging.  相似文献   

16.
<正>Europium(Ⅲ)-doped YF_3 is prepared by a hydrothermal process at 200℃.X-ray diffraction(XRD) pattern identifies the formation of YF_3 phase without detectable impurity.Environment scanning electron microscopy(ESEM) image shows the even size distribution of the samples with cubic morphology.The excitation and emission spectra of the rare earth ions doped YF_3 are investigated by fluorescence spectrophotometer.The excitation spectrum for 591 nm emission has several excitation bands at 320, 365,386,397 and 467 nm,and the main peak value was 397 nm.Typical Eu~(3+) emission peaks at 591 nm(~5D_0→~7F_1) and 612 nm (~5D_0→~7F_2) are observed when excited by 397 nm,and the strongest emission is 591 nm,demonstrating that the rare earth ions occupy the centrosymmetrical sites in YF_3.  相似文献   

17.
The absorption and emission spectroscopies of Er3+ doped and Er3+/Yb3+ codoped Ca(PO3)2, Sr(PO3)2 and Ba(PO3)2 glasses have been studied. From the Judd-Ofelt intensity parameters, the spontaneous emission probabilities of some relevant transitions and the radiative lifetimes of several excited states of Er3+ have been calculated. The decay curves of the Er3+ emission at 1.5 microm have been measured at different temperatures. The data have been fitted using a stretched exponential function and the obtained experimental lifetimes have been compared with the calculated radiative lifetimes. The difference between the experimental and calculated lifetimes is attributed to the presence of traces of OH groups in the host glasses. The absolute OH content in some glasses has been determined from the infrared spectra. The emission spectra at 1.5 microm of the Er3+ ion in the codoped glasses have been measured at different temperatures. The integrated emission intensities decrease significantly on passing from room temperature to 13 K, suggesting a temperature dependence of the rate of the energy transfer process between Yb3+ and Er3+.  相似文献   

18.
The aim of this work was to investigate the formation of J-aggregates of thiacyanine dye (TC, 5,5′-disulfopropyl-3,3′-dichlorothiacyanine sodium salt) in the presence of 6 nm spherical silver nanoparticles (Ag NPs) using spectrophotometric and fluorescence methods. The formation of J-aggregates was concentration dependent and characterized by the appearance of the new absorption band with the maximum at 481 nm. Spectrophotometric study of J-aggregate formation and time stability suggested that they were formed on the account of monomer form of TC. Moreover, the stability of J-aggregates increased with the lowering AgNPs concentration. The measurements of fluorescence of the NPs—dye assembly clearly indicated that the fluorescence of TC was quenched by Ag NPs on the concentration dependent manner. The spectrophotometric and fluorescence properties of NPs—dye assembly were found to be quantitatively related to the surface coverage of the dye on the Ag NPs.  相似文献   

19.
Spectroscopic properties of Ho3+ doped tellurite glass (1 mol.% of Ho3+) have been studied. The absorption and fluorescence spectra have been recorded and analysed using the Judd-Offelt theory. The analysis indicates that Ho doped tellurite glasses can show lasing on the 5F4 (5S2)-5I8 transition (548.0 nm).  相似文献   

20.
Currently, highly luminescent colloidal upconversion nanoparticles (UCNPs) have expanded an increasing interest of researchers because of their facilitating lability in the biomedical/clinical field. In this study, NaYF4:Yb,Er UCNPs are prepared by eco-friendly metal complexation-based thermal decomposition method at a lower temperature in aqueous media. The phase structure, crystallinity, phase purity, morphology, colloidal dispersibility, surface structure, surface charge, and optical and luminescent properties were evaluated carefully by X-ray diffraction (XRD), scanning electron microscope (SEM), transmission electron microscope (TEM), energy dispersive x-ray analysis (EDX), Thermogravimetric analysis (TGA), zeta potential, Fourier transform infrared (FTIR), UV/visible and photoluminescent spectroscopic techniques. XRD pattern shows a pure single-phase cubic structure with an average grain size of 30–35 nm. TEM and SEM micrographs exhibited irregularly shaped spherical morphologies, porous surface structures highly aggregated UCNPs with the narrow-size distribution. Positive zeta potential has shown value signifying high absorption in the visible region which indicates particle's good colloidal stability in aqueous media. Under NIR-laser light excitation, the UCNPs emit strong UC emission transitions in the visible region. A broad infrared absorption peak of hydroxyl groups (–OH) in FTIR spectrum and mass loss at a lower temperature in TGA verified the surface functionality of UCNPs, with high colloidal stability, and excellent biocompatibility in aqueous media. In terms of their surface characteristics and high luminescent properties, the NaYF4:Yb,Er UCNPs could be interestingly applied in tagging of biomolecules, drug delivery, proteins labeling, and therapeutic and thermostats applications.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号