首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The majority of invertebrate skeletal tissues are composed of the most stable crystalline polymorphs of CaCO(3), calcite, and/or aragonite. Here we describe a composite skeletal tissue from an ascidian in which amorphous and crystalline calcium carbonate coexist in well-defined domains separated by an organic sheath. Each biogenic mineral phase has a characteristic Mg content (5.9 and 1.7 mol %, respectively) and concentration of intramineral proteins (0.05 and 0.01 wt %, respectively). Macromolecular extracts from various biogenic amorphous calcium carbonate (ACC) skeletons are typically glycoproteins, rich in glutamic acid and hydroxyamino acids. The proteins from the crystalline calcitic phases are aspartate-rich. Macromolecules extracted from biogenic ACC induced the formation of stabilized ACC and/or inhibited crystallization of calcite in vitro. The yield of the synthetic ACC was 15-20%. The presence of Mg facilitated the stabilization of ACC: the protein content in synthetic ACC was 0.12 wt % in the absence of Mg and 0.07 wt % in the presence of Mg (the Mg content in the precipitate was 8.5 mol %). In contrast, the macromolecules extracted from the calcitic layer induced the formation of calcite crystals with modified morphology similar to that expressed by the original biogenic calcite. We suggest that specialized macromolecules and magnesium ions may cooperate in the stabilization of intrinsically unstable amorphous calcium carbonate and in the formation of complex ACC/calcite tissues in vivo.  相似文献   

2.
The influence of four calcium complexing substances, i.e., citric acid (CIT), diethylenetriaminepentaacetic acid (DTPA), ethylenediaminetetraacetic acid (EDTA) and pyromellitic acid (PMA), on the crystal growth rate of the calcium carbonate polymorphs aragonite and calcite has been studied. Using a seeded constant supersaturation method supersaturation was maintained at 4 by keeping a constant pH of 8.5 through addition of sodium carbonate and calcium chloride solutions. The unique composition of each solution was calculated using chemical speciation. The growth rate was interpreted in terms of an overall growth rate. For both calcite and aragonite, the crystal growth rate is significantly reduced in the presence of the calcium complexing substances. The growth retarding effect depends on both the concentration and the polymorph. The relative crystal growth rate was correlated to the total complexing agent concentration using a Langmuir adsorption approach. Aragonite appeared fully covered for lower total concentrations than calcite. Furthermore, CIT very efficiently blocked aragonite growth contrary to what was observed for calcite. This is thought to be related to certain distinct features of the dominant aragonite crystal faces compared to the dominant calcite faces.  相似文献   

3.
This work is aimed to investigate the effects of the adjustment of the electrical conductivity (kappa25) during the semicontinuous carbonation of Ca(OH)2 suspension (slaked lime) on the morphology of the precipitated calcite (CaCO3) particles. The experiments were carried out at 30, 45, and 60 degrees C. A gradual morphological change from rhombohedral to scalenohedral shapes was produced with an increase of kappa25 from 1 to 7 mS/cm at each temperature. The explanation of this morphological change is given in terms of the increase of both the supersaturation and the ratio between concentrations of charged species containing calcium and carbonate ([Ca]ch/[CO3]ch) in the aqueous phase as the kappa25 set-point increases, prior to the precipitation process. In addition to the rise of the supersaturation this change most probably takes place because the increase of the [Ca]ch/[CO3]ch ratio affects the growth rate of the rhombohedral {104} and scalenohedral {21-1} faces in a different manner: (i) favoring the equality between the surface coverage of Ca2+ and CO3(2-) on the stoichiometric {104} face, thus enhancing the formation of CaCO3(0) growth units and then its growth rate and (ii) inhibiting the growth of the {21-1} face by adsorption of the excess calcium species.  相似文献   

4.
Sparingly soluble calcium salts were studied as reactants in the synthesis of needle-like precipitated calcium carbonate (PCC). The morphology and aspect ratio of the PCC particles were characterized with SEM. Polymorphs and crystal size were characterized using X-ray diffraction. The counterions of the sparingly soluble salts influenced the growth kinetics of PCC as well as the polymorphism and morphology of product particles. Either chrysanthemum-like or needle-like aragonite can be synthesized from calcium sulfate and sodium carbonate depending on the supersaturation and synthesis conditions. Low concentration and slow addition rate of sodium carbonate solution were favorable to the formation of aragonite. Addition of sodium sulfate to the reaction system (calcium chloride and sodium carbonate) promoted the formation of aragonite and decreased the crystal size of aragonite due to the decrease of supersaturation and adsorption of sulfate ion. Too much added sodium sulfate, however, did not further increase the aragonite fraction. An optimal temperature for the formation of aragonite was found to be ca. 60 degrees C. Slow dissolution kinetics of sparingly dissoluble salt also is very important for controlling PCC polymorphism and morphology.  相似文献   

5.
Catalytic decomposition of urea by urease in aqueous calcium chloride solutions was used to rapidly prepare calcium carbonate polymorphs at room temperature. The nature of the resulting particles depended on the concentration of the enzyme and, in a strong manner, on the agitation of the reacting solutions. In an undisturbed system an amorphous precipitate is formed first, which readily crystallized to vaterite and upon aging changed to calcite. Under the influence of magnetic stirring, the amorphous phase could be not observed; instead smaller particles were initially obtained, which aggregated to vaterite and calcite. Similarly, the application of ultrasonic energy produced small vaterite particles at the early stages. It is apparent that enzyme macromolecules are important in the development of calcite faces and, as such, they exert significant influence on calcite morphology, without being present in detectable amounts in the resulting solids. Copyright 2001 Academic Press.  相似文献   

6.
The ability of malic acid to control calcium carbonate morphology has been investigated by aging calcium chloride solution in the presence of urea in a 90 °C bath. Malic acid favors the formation of calcite. A transition from single block to aggregate with special morphology occurs upon increasing malic acid concentration. The morphological development of CaCO3 crystal obviously depends on the starting pH. CaCO3 crystal grows from spindle seed to dumbbell in the pH regime from 7 to 11; while it evolves from spindle seed, through peanut, to sphere at pH=11.5. Both dumbbell and sphere consist of rods that are elongated along c-axis and capped with three smooth, well-defined rhombic {1 0 4} faces. A tentative growth mechanism is proposed based on the fractal model suggested by R. Kniep and S. Busch [Angew. Chem. Int. Ed. Engl. 35 (1996) 2624].  相似文献   

7.
To probe the scale inhibition mechanisms,calcium carbonate scale occurring before and after the ad- dition of scale inhibitors was collected.The results from scale SEM confirm that,without scale inhibitor, calcium carbonate scale shows rhombohedron and hexagon,which are the characteristic feathers of calcite.After addition of inhibitors,morphology of scale is changed,and the more efficient the scale inhibitor is,the more greatly the morphology is modified.To elucidate the scale constitute,they were further analyzed by FT-IR,XRD.Besides calcite,vaterite and aragonite occur in calcium carbonate scale after addition of inhibitors,and the higher scale inhibition efficiency is,the more vaterite presents in scale.It can be concluded that the alteration of morphology is ascribed to the change of crystal form. There are three stages in the crystallizing process including occurrence and disappearing of unstable phase,occurrence and disappearing of metastable phase,development of stable phase.Without scale inhibitors,metastable phases usually transform into stable phase,thus the main constitute of formed scale is calcite.When scale inhibitors are added,both formation and transformation of metastable phases are inhibited,which results in the occurrence of aragonite and vaterite.From the fact that more vaterite presents in scale with a more efficient scale inhibitor added,we can see that the function of scale inhibitor is realized mainly by controlling the crystallizing process at the second stage.  相似文献   

8.
The interaction of divalent Cd and Pb with the {101 4} cleavage faces of calcite has been investigated with X-ray photoelectron spectroscopy (XPS) and atomic force microscopy (AFM). Analysis of the {101 4} cleavage planes of calcite was carried out with X-ray photoelectron spectroscopy (XPS) after exposure to divalent metal-bearing solutions in the 0.1-100 microM concentration range for times ranging from 1 to 24 h. The uptake of Cd2+ by calcite was determined to be greater than that of Pb2+ under similar experimental conditions (1 microM, pH 8.2, 24 h exposure time). In both cases, the majority of the divalent metal was postulated to exist in a surface precipitate. AFM results showed that the exposure of calcite to a 1 microM Pb2+ solution resulted in ellipsoidal surface growths that were attributed to the nucleation of a PbCO3 bulk phase. In the Cd circumstance, AFM showed comparatively flat growth features forming on the calcite surface even at concentrations down to 0.1 microM, where the solution would be expected to be undersaturated with respect to Cd bulk phases. These features were attributed to a (Ca,Cd)CO3 solid solution. The individual exposure of these Cd/CaCO3 and Pb/CaCO3 samples to water pre-equilibrated with calcite (metal free) for 1 h led to the removal of no more than 20% of the divalent metal, suggesting that if there was an adsorbed Pb or Cd complex initially on the calcite surface, it was an minority species compared to the precipitate phase. Exposure of calcite to 100 microM Cd and Pb resulted in the accumulation of precipitate on the calcite surface presumably due to the divalent metal initial solution concentrations exceeding the solubility products of CdCO3 and PbCO3, respectively.  相似文献   

9.
Calcium carbonate was precipitated from calcium hydroxide and carbonic acid solutions at 25 degrees C, with and without addition of different magnesium (MgSO(4), Mg(NO(3))(2) and MgCl(2)) and sodium salts (Na(2)SO(4), NaNO(3) and NaCl) of identical anions, in order to study the mode of incorporation of magnesium and inorganic anions and their effect on the morphology of calcite crystals over a range of initial reactant concentrations and limited c(i)(Mg(2+))/c(i)(Ca(2+)) molar ratios. The morphology, crystal size distribution, composition, structure, and specific surface area of the precipitated crystals, as well as the mode of cation and anion incorporation into the calcite crystal lattice, were studied by a combination of optical and scanning electron microscopy (SEM), electronic counting, a multiple BET method, thermogravimetry, FT-IR spectroscopy, X-ray diffraction (XRD), and electron paramagnetic resonance (EPR) spectroscopy. In the systems of high initial relative supersaturation, precipitation of an amorphous precursor phase preceded the formation of calcite, whereas in those of lower supersaturation calcite was the first and only polymorphic modification of calcium carbonate that appeared in the system. The magnesium content in calcite increased with the magnesium concentration in solution and was correlated with the type of magnesium salt used. Mg incorporation caused the formation of crystals elongated along the calcite c axis and, in some cases, the appearance of new [011] faces. Polycrystalline aggregates were formed when the c(i)(Mg(2+))/c(i)(Ca(2+)) molar ratios in solution were increased. Addition of sulfate ions, alone, caused formation of spherical calcite polycrystalline aggregates.  相似文献   

10.
本文以生物矿化模型系统为基础,利用LB技术,采用本体交换的方法,制备了牛血清白蛋白(BSA)Langmuir膜,以更加接近生物矿化的方法研究了BSA Langmuir膜对碳酸钙晶体生长的取向、形貌和晶型的控制作用。XRD分析表明晶体为碳酸钙的方解石晶型,且晶体仅沿(104)晶面有取向生长。SEM分析表明结晶初期碳酸钙以球状的晶体存在,随着时间的延长,BSA对晶体形貌的控制作用逐渐减弱,直到完全不起作用,在结晶后期形成菱方形晶体,但晶体生长取向和晶型始终没有发生变化。说明BSA Langmuir膜对碳酸钙的生长取向、晶型和形貌有较好的控制作用。  相似文献   

11.
Interactions of succinic acid (SUC) with the {104} cleavage faces of calcite show a strong preference in crystallographic directions. In situ atomic force microscopy revealed that the morphology of etch pits on the crystal surfaces experienced a transition from the common rhombus to a hexagon upon the introduction of SUC. The pit shape further evolved from 6-sided to 7-sided and eventually to 5-sided with increasing concentrations of SUC. Analysis indicates that the morphology changes may result from SUC preferentially binding to the [42] and [010] edges of the (104) plane to selectively slow down their step speed.  相似文献   

12.
Two polymorphic modifications of calcium carbonate nanoparticles (calcite and aragonite) characterized by different shape and coated with fatty acids were used as reinforcement phases of Nylon 6. Nylon 6 based nanocomposites filled with 1% and 5% by weight of calcite and aragonite were prepared by melt mixing. Morphological analysis performed on the fractured surface of nanocomposites showed that the coating agent permits to obtain uniform and fine nanoparticles dispersion. DMTA analysis revealed that nanoparticles increase the glass transition temperature of Nylon 6 up to 12 °C in the case of calcite, while a less pronounced increase was recorded for aragonite. Finally, structural analyses (FT-IR and WAXS) underlined that calcite nanoparticles promote and stabilize the γ-crystalline form of Nylon 6, while in the case of aragonite nanofillers the α-crystalline form was still dominant.  相似文献   

13.
A new equilibrium form of zircon crystal   总被引:3,自引:0,他引:3  
The surface tensions of the {100}, {110}, {101} and {211} faces are calculated by using Machenzie's method. A new equilibrium form of zircon crystal is then derived on the basis of Wulf's Law. This theoretic form consists of {100} prismatic faces and {211} pyramidal faces, which is different from that of the prediction by the periodic bond chain theory. The discovery of the equilibrium form of zircon crystal provides a clue for understanding of the morphology of zircon crystals formed in deep magma chamber, indicating that zircon morphology is an indicator of crystallization conditions.  相似文献   

14.
采用模拟生物矿化的方法,研究了牛血清白蛋白(BSA) LB膜对碳酸钙晶体成核和生长的诱导控制作用。XRD、SEM结果表明:在BSA单层LB膜诱导下,形成形状规则、边缘清晰的多层盘状方解石晶体,且沿(104)晶面取向生长。说明牛血清白蛋白(BSA) LB膜对碳酸钙的形貌、生长取向性有很好的调控作用。  相似文献   

15.
Although the polymorphism of calcium carbonate is well known, and its polymorphs—calcite, aragonite, and vaterite—have been highly studied in the context of biomineralization, polyamorphism is a much more recently discovered phenomenon, and the existence of more than one amorphous phase of calcium carbonate in biominerals has only very recently been understood. Here we summarize what is known about polyamorphism in calcium carbonate as well as what is understood about the role of amorphous calcium carbonate in biominerals. We show that consideration of the amorphous forms of calcium carbonate within the physical notion of polyamorphism leads to new insights when it comes to the mechanisms by which polymorphic structures can evolve in the first place. This not only has implications for our understanding of biomineralization, but also of the means by which crystallization may be controlled in medical, pharmaceutical, and industrial contexts.  相似文献   

16.
Early‐stage reaction mechanisms for aragonite‐promoting systems are relatively unknown compared to the more thermodynamically stable calcium carbonate polymorph, calcite. Using cryoTEM and SEM, the early reaction stages taking place during aragonite formation were identified in a highly supersaturated solution using an alcohol–water solvent, and an overall particle attachment growth mechanism was described for the system. In vitro evidence is provided for the solid‐state transformation of amorphous calcium carbonate to aragonite, demonstrating the co‐existence of both amorphous and crystalline material within the same aragonite needle. This supports non‐classical formation of aragonite within both a synthetic and biological context.  相似文献   

17.
The calcium carbonate crystallization from aqueous solutions in the presence of alkali additives such as sodium hydroxide and ammonium hydroxide has been researched. It is found CaCO3 crystallizes predominantly in the modification of aragonite in the presence of ammonium hydroxide. The calcium carbonate formation rate in an alkaline medium and the gaseous reaction products due to sorption of gas bubbles on crystal surfaces, affect the aragonite structure formation. It is shown use of ammonium hydroxide for water treatment can solve two urgent tasks such as water softening and exclusion sediment of deposits on the equipment surfaces by a calcium carbonate crystallization in the form of aragonite.  相似文献   

18.
The synthesis and characterization of calcium carbonate microparticles by reaction of calcium chloride and ammonium bicarbonate in the presence of negatively charged phospholipid mixtures of negative and zwitterionic phospholipids has been reported. Negatively charged phospholipids influence the crystal morphology of calcium carbonate and induce the formation of thermodynamically less stable veterite polymorph as opposed to calcite polymorph. The phospholipids are entrapped in the calcium carbonate microparticles during the crystallization process, with a uniform distribution of phospholipids in the interior of the microparticles. This phenomenon was exploited to encapsulate a model hydrophobic fluorophore, the tris(4,7-diphenyl-1,10-phenanthroline)ruthenium(II) dichloride complex, to simulate encapsulation of hydrophobic drug molecules. Thermogravimetric analysis reveals that, in these microparticles, the calcium carbonate and the phospholipid exhibit strong interactions.  相似文献   

19.
A detailed analysis of the effect of calcium carbonate nanoparticles on crystallization of isotactic polypropylene (iPP) is reported in this contribution. CaCO3 nanoparticles with different crystal modifications (calcite and aragonite) and particle shape were added in small percentages to iPP. The nanoparticles were coated with two types of compatibilizer (either polypropylene-g-maleic anhydride copolymer, or fatty acids) to improve dispersion and adhesion with the polymer matrix.It was found that the type of coating agent used largely affects the nucleating ability of calcium carbonate towards formation of polypropylene crystals. CaCO3 nanoparticles coated with maleated polypropylene can successfully promote nucleation of iPP crystals, whereas the addition of nanosized calcium carbonate coated with fatty acids delays crystallization of iPP, the effect being mainly ascribed to the physical state of the coating in the investigated temperature range for crystallization of iPP, as well as to possible dissolution by fatty acids of heterogeneities originally present in the polypropylene matrix.  相似文献   

20.
The influence of the primary structures of plant (Canavalia ensiformis) and bacterial (Bacillus pasteurii) ureases on the precipitation of calcium carbonate polymorphs in solutions of calcium salts and urea at room temperature was investigated. Despite a similar catalytic function in the decomposition of urea, these ureases exerted different influences on the crystal phase formation and on the development of unusual morphologies of calcium carbonate polymorphs. Spherical and uniform vaterite particles were precipitated rather than calcite in the presence of Bacillus urease, while the presence of Canavalia urease resulted in the precipitation of calcite only. Vaterite particles were shown to be built up of nanosized crystallites, proving the importance of nanoscale aggregation processes on the formation of colloidal carbonates. Reduction of the concentration of Bacillus urease in the reacting solution results in the formation of calcite crystals with a more complex surface morphology than the ones obtained by Canavalia urease. These differences may be explained by dissimilarities in the amino acid sequences of the two examined ureases and their different roles in nucleation and physicochemical interactions with the surface of the growing crystals, during the precipitation processes. This study exemplifies the diversity of proteins produced by different organisms for the same function, and the drastic effects of subtle differences in their primary structures on crystal phase formation and growth morphology of calcium carbonate precipitates, which occur as inorganic components in a large number of biogenic structures.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号