共查询到20条相似文献,搜索用时 31 毫秒
1.
Hexamethyldisiloxane [HMDSO, (CH 3) 3-SiOSi-(CH 3) 3] is an important precursor for SiO 2 formation during flame-based silica material synthesis. As a result, HMDSO reactions in flame have been widely investigated experimentally, and many results have indicated that HMDSO decomposition reactions occur very early in this process. In this paper, quantum chemical calculations are performed to identify the initial decomposition of HMDSO and its subsequent reactions using the density functional theory at the level of B3LYP/6-311+G (d, p). Four reaction pathways—(a) Si O bond dissociation of HMDSO, (b) Si C bond dissociation of HMDSO, (c) dissociation and recombination of Si O and Si C bonds, and (d) elimination of a methane molecule from HMDSO—have been examined and identified. From the results, it is found that the barrier of 84.38 kcal/mol and Si O bond dissociation energy of 21.55 kcal/mol are required for the initial decomposition reaction of HMDSO in the first pathway, but the highest free energy barrier (100.69 kcal/mol) is found in the third reaction pathway. By comparing the free energy barriers and reaction rate constants, it is concluded that the most possible initial decomposition reaction of HMDSO is to eliminate the CH 3 radical by Si C bond dissociation. 相似文献
2.
提出一种改进的ZORA(Zeroth-OrderRegularApproximationtotheDiracEquation)方法,其单电子方程为:[σ·p(c^2/2c^2-V~0)σ·p+V(r)]ψ=εψ。式中V~0为空间限域的势能函数:V~0(r=~A∑V~0^A(r~A),r~A=|r-R~A|,V~0^A(r~A)=V^A(r~A){1+exp[α(r~A-r~0^A]}^-^1。其中A表示分子的某个组成原子,R~A为A原子的位置矢量,V^A(r~A)为自由A原子的势函数,α和r~0^A为参数。改进的ZORA方法具有原来方法的所有优点,避免了原有ZORA方法因不满足标度变换不变性带来的缺陷,而且计算过程简单。具体计算表明,通过适当选择参数α和r~0^A,用本研究提出来的方法,在计算分子几何结构和键合能时,基本上消除了ZORA方法由于标度变换依赖性产生的误差。 相似文献
3.
Ab initio geometry optimization was carried out on 10 selected conformations of maltose and two 2‐methoxytetrahydropyran conformations using the density functional denoted B3LYP combined with two basis sets. The 6‐31G* and 6‐311++G** basis sets make up the B3LYP/6‐31G* and B3LYP/6‐311++G** procedures. Internal coordinates were fully relaxed, and structures were gradient optimized at both levels of theory. Ten conformations were studied at the B3LYP/6‐31G* level, and five of these were continued with full gradient optimization at the B3LYP/6‐311++G** level of theory. The details of the ab initio optimized geometries are presented here, with particular attention given to the positions of the atoms around the anomeric center and the effect of the particular anomer and hydrogen bonding pattern on the maltose ring structures and relative conformational energies. The size and complexity of the hydrogen‐bonding network prevented a rigorous search of conformational space by ab initio calculations. However, using empirical force fields, low‐energy conformers of maltose were found that were subsequently gradient optimized at the two ab initio levels of theory. Three classes of conformations were studied, as defined by the clockwise or counterclockwise direction of the hydroxyl groups, or a flipped conformer in which the ψ‐dihedral is rotated by ∼180°. Different combinations of ω side‐chain rotations gave energy differences of more than 6 kcal/mol above the lowest energy structure found. The lowest energy structures bear remarkably close resemblance to the neutron and X‐ray diffraction crystal structures. © 2000 John Wiley & Sons, Inc. * J Comput Chem 21: 1204–1219, 2000 相似文献
4.
Different geometries of nitromethane dimer and nitromethane trimer have been fully optimized employing the density functional theory B3LYP method and the 6-31++G** basis set. Three-body interaction energy has been obtained with the ab initio supermolecular approach at the levels of MP2/6-31++G**//B3LYP/6-31++G** and MP2/aug-cc-pVDZ//B3LYP/6-31++G**. The internal rotation of methyl group induced by intermolecular interaction has been observed theoretically. For the optimized structures of nitromethane dimer, the strength of C--H...O--N H-bond ranges from -9.0 to -12.4 kJ mol(-1) at the MP2/aug-cc-pVDZ//B3LYP/6-31++G** level, and the B3LYP method underestimates the interaction strength compared with the MP2 method, while MP2/6-31++G**//B3LYP/6-31++G** calculated DeltaE(C) is within 2.5 kJ mol(-1) of the corresponding value at the MP4(SDTQ)/6-31G**//B3LYP/6-31++G** level. The analytic atom-atom intermolecular potential has been successfully regressed by using the MP2/6-31++G**//B3LYP/6-31++G** calculated interaction energies of nitromethane dimer. For the optimized structures of nitromethane trimer the three-body interaction energies occupy small percentage of corresponding total binding energies, but become important for the compressed nitromethane explosive. In addition, it has been discovered that the three-body interaction energy in the cyclic nitromethane trimer is more and more negative as intermolecular distances decrease from 2.2 to 1.7 A. 相似文献
6.
Standard density functional theory (DFT) is augmented with a damped empirical dispersion term. The damping function is optimized on a small, well balanced set of 22 van der Waals (vdW) complexes and verified on a validation set of 58 vdW complexes. Both sets contain biologically relevant molecules such as nucleic acid bases. Results are in remarkable agreement with reference high-level wave function data based on the CCSD(T) method. The geometries obtained by full gradient optimization are in very good agreement with the best available theoretical reference. In terms of the standard deviation and average errors, results including the empirical dispersion term are clearly superior to all pure density functionals investigated-B-LYP, B3-LYP, PBE, TPSS, TPSSh, and BH-LYP-and even surpass the MP2/cc-pVTZ method. The combination of empirical dispersion with the TPSS functional performs remarkably well. The most critical part of the empirical dispersion approach is the damping function. The damping parameters should be optimized for each density functional/basis set combination separately. To keep the method simple, we optimized mainly a single factor, s(R), scaling globally the vdW radii. For good results, a basis set of at least triple-zeta quality is required and diffuse functions are recommended, since the basis set superposition error seriously deteriorates the results. On average, the dispersion contribution to the interaction energy missing in the DFT functionals examined here is about 15 and 100% for the hydrogen-bonded and stacked complexes considered, respectively. 相似文献
7.
Quantum chemistry calculations have been performed using Gaussian03 program to compute optimized geometry, harmonic vibrational
frequency along with intensities in IR and Raman spectra at RHF/6-31++G** and B3LYP/6-31++G** levels for phenobarbitone (C 12H 12N 2O 3) in the ground state. The scaled harmonic vibrational frequencies have been compared with experimental FT-IR and FT-Raman
spectra. Theoretical vibrational spectra of the title compound were interpreted by means of potential energy distributions
(PEDs) using MOLVIB program. A detailed interpretation of the infrared spectra of the title compound is reported. On the basis
of the agreement between the calculated and observed results, the assignments of fundamental vibrational modes of phenobarbitone
were examined and some assignments were proposed. The theoretical spectrograms for FT-IR and FT-Raman spectra of the title
compound have been constructed. 相似文献
8.
The potential energy profiles of five selected bimolecular nucleophilic substitution (S N2) reactions at nitrogen (N) center have been reinvestigated with the CCSD(T), G3[MP2,CCSD(T)], MP2, and some density functional methods. The basis sets of 6‐31+G(d,p) and 6‐311+G(3d,2p) are used for the MP2 and density functional calculations. Taking the relative energies at the CCSD(T)/CBS level of theory as benchmarks, we recommend the MP2, B97‐K, B2K‐PLYP, BMK, ωB97X‐D, M06‐2X, M05‐2X, CAM‐B3LYP, M08‐SO, and ωB97X methods to generally characterize the potential energy profiles for the S N2 reactions at N center. Furthermore, these recommended methods with the relatively small 6‐31+G(d,p) basis set may also be used to perform direct classical trajectory simulations to uncover the dynamic behaviors of the S N2 reactions at N center. © 2012 Wiley Periodicals, Inc. 相似文献
10.
Six product channels have been found in the association reaction of CN + CH 2CO, and a variety of possible complexes and saddle points along the minimum energy reaction paths have been characterized at the UMP2(full)/6‐31G( d) level. The dominant reaction channels are the production of CH 2CN + CO and CH 2NC + CO. The isomerization and dissociation reactions of the major products of CH 2CN and CH 2NC have been investigated using the G2MP2 level. © 2005 Wiley Periodicals, Inc. Int J Quantum Chem, 2006 相似文献
11.
用量子化学自洽场分子轨道从头计算方法,采用STO-3G基组计算了MgH~+,Mg_2H~+离子的位能曲线与位能面;给出电子波函数与电子集居数;得到MgH~+的平衡构型键长γ_(Mg-H)1.60A.Mg_2H~+的平衡构型有C_(∞v)与D_(∞h)两类,前者为[Mg—Mg—H]~+,键长γ_(Mg-Mg)2.41,γ_(Mg-H)1.63A;后者为[Mg—H—Mg]~+,γ_(Mg-H)1.73A.前者的总能量比后者低50kcal/mol.还讨论了它们的稳定性.MgH~+的键长计算结果和实测值较吻合,Mg_2H~+的平衡构型计算结果支持了Porter从热力学研究提出的假设. 相似文献
12.
Vibrational analysis of tellurium tetrachloride, TeCl 4, was performed with Hartree–Fock (HF), MP2, and generalized gradient approximation density functional theory (DFT) methods supplemented with polarized double-zeta split valence (DZVP) basis sets and relativistic effective core potentials (RECP) of Hay and Wadt. The molecular geometry is best reproduced at the HF and MP2/RECP+DZVP [polarized Hay and Wadt RECP for Te and 6–31G(d) basis set for Cl] levels of theory. The DFT methods gave rise to poorer results, especially those using Becke's 1988 exchange functional. Generally, the vibrational frequencies calculated by the MP2 and B3-type DFT methods with the all electron and RECP+DZVP basis sets as well as at the HF/RECP level were in satisfactory accord with the experimental data. The agreement was good enough to assist the assignment of the measured vibrational spectra. The best agreement with the experimental vibrational frequencies was achieved with the scaled HF/RECP force field. Consistent results were obtained for the unobserved A 2 (ν 4) fundamental, where the results of the best methods were within 4 cm −1. The best force fields were obtained with the following methods: Becke3–Lee–Yang–Parr and Becke3–Perdew/all electron basis, MP2 and Becke3-Perdew/RECP+DZVP, and HF/RECP. The methods using RECPs are advantageous for large-scale computations. The RECP basis set effectively compensates the errors of the HF method for TeCl 4; however, it provides poor results with correlated methods. © 1998 John Wiley & Sons, Inc. J Comput Chem 19: 308–318, 1998 相似文献
13.
Infrared spectra of 3,3,3-trifluoropropyltrichlorosilane (CF3CH2CH2SiCl3) were obtained in the vapour, amorphous and crystalline solid phases in the range 4000-50 cm-1. Additional spectra in argon matrices at 5.0 K were recorded before and after annealing to 20-36 K. Raman spectra of the compound as a liquid were recorded at various temperatures between 298 and 210 K and spectra of the amorphous and crystalline solids were obtained. The spectra suggested the existence of two conformers (anti and gauche) in the fluid phases and in the matrix. When the vapour was shock-frozen on a cold finger at 80 K and subsequently annealed to 120-150 K, six weak or very weak Raman bands vanished in the crystal. Similar variations were observed in the corresponding infrared spectra after annealing and four very weak IR bands disappeared after crystallization. From intensity variations between 298 and 210 K of three Raman band pairs an average value Delta(conf)H degrees (gauche-anti)=6.1+/-0.5 kJmol-1 was obtained in the liquid. Annealing experiments indicate that the anti conformer also has a lower energy in the argon matrices. The conformational equilibrium is highly shifted towards anti in the liquid, and the low energy conformer also forms the crystal. The spectra of the abundant anti conformer and the few bands ascribed to the gauche conformer have been interpreted. Ab initio calculations at the HF/6-311G(**) and B3LYP/6-311G(**) gave optimized geometries, infrared and Raman intensities and vibrational frequencies for the anti and gauche conformers. The conformational energy differences derived were 11.8 and 9.2 kJmol-1 from the HF and the B3LYP calculations, respectively. 相似文献
14.
The tryptophyl-glycine (Trp-Gly) and tryptophyl-glycyl-glycine (Trp-Gly-Gly) peptides have been studied by means of molecular dynamic simulations combined with high-level correlated ab initio quantum chemical and statistical thermodynamic calculations. The lowest energy conformers were localized in the free energy surface. The structures of the different Trp-Gly and Trp-Gly-Gly conformers coexisting in the gas phase have been for the first time reported and their scaled theoretical IR spectra unambiguously assigned and compared with previous gas-phase experimental results. Common geometrical features have been systematically observed for the sequence Trp, Trp-Gly, and Trp-Gly-Gly. In addition, the peptide backbone of Trp-Gly-Gly has been compared with that of the previously studied Phe-Gly-Gly (Reha, D. et. al. Chem. Eur. J. 2005, 11, 6803). From the observed systematic structural behavior between these peptide analogues, it is expected that the gas-phase conformers of other similar aromatic small peptides would present equivalent geometries. The DFT methodology failed to describe the potential energy surface of the studied peptides since the London dispersion energy (not covered in DFT) plays a significant role in the stabilization of most stable conformers. 相似文献
15.
The interaction between roscovitine and cyclin-dependent kinase 2 (cdk2) was investigated by performing correlated ab initio quantum-chemical calculations. The whole protein was fragmented into smaller systems consisting of one or a few amino acids, and the interaction energies of these fragments with roscovitine were determined by using the MP2 method with the extended aug-cc-pVDZ basis set. For selected complexes, the complete basis set limit MP2 interaction energies, as well as the coupled-cluster corrections with inclusion of single, double and noninteractive triples contributions [CCSD(T)], were also evaluated. The energies of interaction between roscovitine and small fragments and between roscovitine and substantial sections of protein (722 atoms) were also computed by using density-functional tight-binding methods covering dispersion energy (DFTB-D) and the Cornell empirical potential. Total stabilisation energy originates predominantly from dispersion energy and methods that do not account for the dispersion energy cannot, therefore, be recommended for the study of protein-inhibitor interactions. The Cornell empirical potential describes reasonably well the interaction between roscovitine and protein; therefore, this method can be applied in future thermodynamic calculations. A limited number of amino acid residues contribute significantly to the binding of roscovitine and cdk2, whereas a rather large number of amino acids make a negligible contribution. 相似文献
16.
A complete scan of the potential‐energy surfaces for selected DNA base trimers has been performed by a molecular dynamics/quenching technique using the force field of Cornell et al. implemented in the AMBER7 program. The resulting most stable/populated structures were then reoptimized at a correlated ab initio level by employing resolution of the identity, Møller–Plesset second‐order perturbation theory (RI‐MP2). A systematic study of these trimers at such a complete level of electronic structure theory is presented for the first time. We show that prior experimental and theoretical interpretations were incorrect in assuming that the most stable structures of the methylated trimers corresponded to planar systems characterized by cyclic intermolecular hydrogen bonding. We found that stacked structures of two bases with the third base in a T‐shape arrangement are the global minima in all of the methylated systems: they are more stable than the cyclic planar structures by about 10 kcal mol ?1. The different behaviors of nonmethylated and methylated trimers is also discussed. The high‐level geometries and interaction energies computed for the trimers serve also as a reference for the testing of recently developed density functional theory (DFT) functionals with respect to their ability to correctly describe the balance between the electrostatic and dispersion contributions that bind these trimers together. The recently reported M052X functional with a polarized triple‐zeta basis set predicts 11 uracil trimer interaction energies with a root‐mean‐square error of 2.3 kcal mol ?1 relative to highly correlated ab initio theoretical calculations. 相似文献
17.
The electron ionization mass spectra of four organic compounds are predicted based on the results of quantum chemical calculations at the DFT/B3LYP/6‐311 + G* level of theory. This prediction is performed ‘ ab initio’, i.e. without any prior knowledge of the thermodynamics or kinetics of the reactions under consideration. Using a set of rules determining which routes will be followed, the fragmentation of the molecules' bonds and the complete resulting fragmentation pathways are studied. The most likely fragmentation pathways are identified based on calculated reaction energies ΔE when bond cleavage is considered and on activation energies ΔE ? when rearrangements are taken into account; the final intensities of the peaks in the spectrum are estimated from these values. The main features observed in the experimental mass spectra are correctly predicted, as well as a number of minor peaks. In addition, the results of the calculations allow us to propose fragmentation pathways new to empirical mass spectrometry, which have been experimentally verified using tandem mass spectrometry measurements. Copyright © 2016 John Wiley & Sons, Ltd. 相似文献
18.
The geometric parameters and energy characteristics of small endofullerenes N@C n ( n = 20, 24, 30, 32, 40, 50) and N@C 60 in the quartet ground state were calculated by the B3LYP/6-31G* method. The N atom is located at the center of the carbon
cage in all molecules except N@C 30, where it is bound to the cage wall. Encapsulation of nitrogen atom has little effect on the fullerene cage geometry for
n = 40, 50, and 60. No significant charge transfer from the N endo-atom to the cage was revealed for all the N@C n endofullerenes studied. The calculated spin density on the nitrogen endo-atom increases as the size ( n) of the carbon cage increases. The relative stabilities of C n fullerenes and corresponding endofullerenes N@C n are discussed.
Published in Russian in Izvestiya Akademii Nauk. Seriya Khimicheskaya, No. 1, pp. 15–20, January, 2006. 相似文献
19.
The infrared spectra of 3-pentyn-2-ol, CH 3CCCH(OH)CH 3, have been recorded as a vapour and liquid at ambient temperature, as a solid at 78 K in the 4000–50 cm −1 range and isolated in an argon matrix at ca. 5 K. Infrared spectra of the solid phase at 78 K were obtained before and after annealing to temperatures of 120 and 130 K. The IR spectra of the solid were quite similar to that of the liquid. Raman spectra of the liquid were recorded at room temperature and at various temperatures between 295 and 153 K. Spectra of an amorphous and annealed solid were recorded at 78 K. In the variable temperature Raman spectra, some bands changed in relative intensity and were interpreted in terms of conformational equilibria between the three possible conformers. Complete assignments were made for all the bands of the most stable conformer in which OH is oriented anti to C1(aMe). From various bands assigned to a second conformer in which OH is oriented anti to Hgem(aH), the conformational enthalpy differences was found to be between 0.4 and 0.8 kJ mol−1. The highest energy conformer with OH anti to C3(aC) was not detected. Quantum-chemical calculations have been carried out at the MP2 and B3LYP levels with a variety of basis sets. Except for small basis set calculations for which the aH conformer had slightly lower energy, all the calculations revealed that aMe was the low energy conformer. The B3LYP/cc-pVTZ calculations suggested the aMe conformer as more stable by 0.8 and 8.3 kJ mol−1 relative to aH an aC, respectively. Vibrational wavenumbers and infrared and Raman band intensities for two of the three conformers are reported from B3LYP/cc-pVTZ calculations. 相似文献
20.
Summary The RHF and geometry optimization sections of the ab initio quantum chemistry code, GAMESS, have been optimized for a network of parallel microprocessors, Inmos T800-20 transputers, using both indirect and direct SCF techniques. The results indicate great scope for implementation of such codes on small parallel computer systems, very high efficiencies having been achieved, particularly in the cases of direct SCF and geometry optimization with large basis sets.The work, although performed upon one particular parallel system, the Meiko Computing Surface, is applicable to a wide range of parallel systems with both shared and distributed memory. 相似文献
|