首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
In this paper, we develop a method for constructing minimum volume ellipsoids containing a wedge-shaped subset of a given ellipsoid. This construction yields a class of ellipsoid algorithms for convex programming that use rank-two update formulae. Research supported by the National Science Foundation, Grant No. MC582-01790.  相似文献   

2.
介绍近几年国际上求解非线性半定规划的若干有效新算法, 包括增广Lagrangian函数法、序列半定规划法、序列线性方程组法以及交替方向乘子法. 最后, 对非线性半定规划的算法研究前景进行了探讨.  相似文献   

3.
This paper summarizes the main results on approximate nonlinear programming algorithms investigated by the author. These algorithms are obtained by combining approximation and nonlinear programming algorithms. They are designed for programs in which the evaluation of the objective functions is very difficult so that only their approximate values can be obtained. Therefore, these algorithms are particularly suitable for stochastic programming problems with recourse.Project supported by the National Natural Science Foundation of China.  相似文献   

4.
Test examples for nonlinear programming codes   总被引:3,自引:0,他引:3  
The increasing importance of nonlinear programming software requires an enlarged set of test examples. The purpose of this note is to point out how an interested mathematical programmer could obtain computer programs of more than 120 constrained nonlinear programming problems which have been used in the past to test and compare optimization codes.  相似文献   

5.
The paper considers an example of Wächter and Biegler which is shown to converge to a nonstationary point for the standard primal–dual interior-point method for nonlinear programming. The reason for this failure is analyzed and a heuristic resolution is discussed. The paper then characterizes the performance of LOQO, a line-search interior-point code, on a large test set of nonlinear programming problems. Specific types of problems which can cause LOQO to fail are identified.Research of the first and third authors supported by NSF grant DMS-9870317, ONR grant N00014-98-1-0036.Research of the second author supported by NSF grant DMS-9805495.  相似文献   

6.
Parallel algorithms for nonlinear programming problems   总被引:1,自引:0,他引:1  
This paper describes several parallel algorithms for solving nonlinear programming problems. Two approaches where parallelism can successfully be introduced have been explored: a quadratic approximation method based on penalty function and a dual method. These methods are improved by using two algorithms originally proposed for solving unconstrained problems: the parallel variable metric algorithm and the parallel Jacobson-Oksman algorithm. Even though general problems are dealt with, particular emphasis is placed on the potential of these parallel methods for separable programming problems. The numerical effectiveness of the algorithms is demonstrated on a set of test problems using a Cray-1S vector computer and serial computers (with respect to sequential versions of the same methods).These studies were sponsored in part by the CERT. The author would particularly like to thank Ph. Berger (LSI-ENSEEIHT), the researchers of the DERI (CERT) and of the Groupe Structures, Aerospatiale, for their assistance.  相似文献   

7.
We propose a modified sequential quadratic programming method for solving mixed-integer nonlinear programming problems. Under the assumption that integer variables have a smooth influence on the model functions, i.e., that function values do not change drastically when in- or decrementing an integer value, successive quadratic approximations are applied. The algorithm is stabilized by a trust region method with Yuan’s second order corrections. It is not assumed that the mixed-integer program is relaxable or, in other words, function values are evaluated only at integer points. The Hessian of the Lagrangian function is approximated by a quasi-Newton update formula subject to the continuous and integer variables. Numerical results are presented for a set of 80 mixed-integer test problems taken from the literature. The surprising result is that the number of function evaluations, the most important performance criterion in practice, is less than the number of function calls needed for solving the corresponding relaxed problem without integer variables.  相似文献   

8.
Let 𝔽 be a field of characteristic two. Let S n (𝔽) denote the vector space of all n?×?n symmetric matrices over 𝔽. We characterize i. subspaces of S n (𝔽) all whose elements have rank at most two where n???3,

ii. linear maps from S m (𝔽) to S n (𝔽) that sends matrices of rank at most two into matrices of rank at most two where m, n???3 and |𝔽|?≠?2.

  相似文献   

9.
A general nonlinear programming problem with interval functions is considered. Two reductions of this problem to the deterministic nonlinear programming problem are proposed, and illustrative examples are discussed.  相似文献   

10.
We investigate an ellipsoid algorithm for nonlinear programming. After describing the basic steps of the algorithm, we discuss its computer implementation and present a method for measuring computational efficiency. The computational results obtained from experimenting with the algorithm are discussed and the algorithm's performance is compared with that of a widely used commercial code. This research was supported in part by The National Science Foundation, Grant No. MCS78-02096.  相似文献   

11.
A variant of the ellipsoid method for nonlinear programming is introduced to enhance the speed of convergence. This variant is based on a new simple scheme to reduce the ellipsoid volume by using two center cuts generated in two consecutive iterations of the ellipsoid method. Computational tests show a significant improvement in computational efficiency. The tests show that the improvement is more significant for larger-size problems.  相似文献   

12.
利用遗传算法求一类非线性规划的最优解   总被引:4,自引:0,他引:4  
针对一类非线性规则问题(Nonlinear Programming Problem),采用遗传算法思想设计求解算法,实例表明,该遗传算法具有较高的计算效率。  相似文献   

13.
Several types of finite-dimensional nonlinear programming models are considered in this article. Second-order optimality conditions are derived for these models, under the assumption that the functions involved are piecewiseC 2. In rough terms, a real-valued function defined on an open subsetW orR n is said to be piecewiseC k onW if it is continuous onW and if it can be constructed by piecing together onW a finite number of functions of classC k .  相似文献   

14.
In this study, a new filter algorithm is presented for solving the nonlinear semidefinite programming. This algorithm is inspired by the classical sequential quadratic programming method. Unlike the traditional filter methods, the sufficient descent is ensured by changing the step size instead of the trust region radius. Under some suitable conditions, the global convergence is obtained. In the end, some numerical experiments are given to show that the algorithm is effective.  相似文献   

15.
Li Dong  Guohui Zhao 《Optimization》2016,65(4):729-749
Homotopy methods are globally convergent under weak conditions and robust; however, the efficiency of a homotopy method is closely related with the construction of the homotopy map and the path tracing algorithm. Different homotopies may behave very different in performance even though they are all theoretically convergent. In this paper, a spline smoothing homotopy method for nonconvex nonlinear programming is developed using cubic spline to smooth the max function of the constraints of nonlinear programming. Some properties of spline smoothing function are discussed and the global convergence of spline smoothing homotopy under the weak normal cone condition is proven. The spline smoothing technique uses a smooth constraint instead of m constraints and acts also as an active set technique. So the spline smoothing homotopy method is more efficient than previous homotopy methods like combined homotopy interior point method, aggregate constraint homotopy method and other probability one homotopy methods. Numerical tests with the comparisons to some other methods show that the new method is very efficient for nonlinear programming with large number of complicated constraints.  相似文献   

16.
This paper presents a multiplier-type method for nonlinear programming problems with both equality and inequality constraints. Slack variables are used for the inequalities. The penalty coefficient is adjusted automatically, and the method converges quadratically to points satisfying second-order conditions.The work of the first author was supported by NSF RANN and JSEP Contract No. F44620-71-C-0087; the work of the second author was supported by the National Science Foundation Grant No. ENG73-08214A01 and US Army Research Office Durham Contract No. DAHC04-73-C-0025.  相似文献   

17.
This paper describes a gradient projection-multiplier method for solving the general nonlinear programming problem. The algorithm poses a sequence of unconstrained optimization problems which are solved using a new projection-like formula to define the search directions. The unconstrained minimization of the augmented objective function determines points where the gradient of the Lagrangian function is zero. Points satisfying the constraints are located by applying an unconstrained algorithm to a penalty function. New estimates of the Lagrange multipliers and basis constraints are made at points satisfying either a Lagrangian condition or a constraint satisfaction condition. The penalty weight is increased only to prevent cycling. The numerical effectiveness of the algorithm is demonstrated on a set of test problems.The author gratefully acknowledges the helpful suggestions of W. H. Ailor, J. L. Searcy, and D. A. Schermerhorn during the preparation of this paper. The author would also like to thank D. M. Himmelblau for supplying a number of interesting test problems.  相似文献   

18.
The problem of packing ellipsoids in the three-dimensional space is considered in the present work. The proposed approach combines heuristic techniques with the resolution of recently introduced nonlinear programming models in order to construct solutions with a large number of ellipsoids. The introduced approach is able to pack identical and non-identical ellipsoids within a variety of containers. Moreover, it allows the inclusion of additional positioning constraints. This fact makes the proposed approach suitable for constructing large-scale solutions with specific positioning constraints in which density may not be the main issue. Numerical experiments illustrate that the introduced approach delivers good quality solutions with a computational cost that scales linearly with the number of ellipsoids; and solutions with more than a million ellipsoids are exhibited.  相似文献   

19.
We consider maximin and minimax nonlinear mixed integer programming problems which are nonsymmetric in duality sense. Under weaker (pseudo-convex/pseudo-concave) assumptions, we show that the supremum infimum of the maximin problem is greater than or equal to the infimum supremum of the minimax problem. As a particular case, this result reduces to the weak duality theorem for minimax and symmetric dual nonlinear mixed integer programming problems. Further, this is used to generalize available results on minimax and symmetric duality in nonlinear mixed integer programming.  相似文献   

20.
Simplicial decomposition is a special version of the Dantzig—Wolfe decomposition principle, based on Carathéodory's theorem. The associated class of algorithms has the following features and advantages: The master and the subprogram are constructed without dual variables; the methods remain therefore well-defined for non-concave objective functions, and pseudo-concavity suffices for convergence to global maxima. The subprogram produces affinely independent sets of feasible generator points defining simplices, which the master program keeps minimal by dropping redundant generator points and finding maximizers in the relative interiors of the resulting subsimplices. The use of parallel subspaces allows the direct application of any unrestricted optimization method in the master program; thus the best unconstrained procedure for any type of objective function can be used to find constrained maximizers for it.The paper presents the theory for this class of algorithms, the APL-code of a demonstration method and some computational experience with Colville's test problems.I am grateful to Philip Wolfe for encouraging me to write this paper, and I am indebted to him and a referee for helpful comments.Research was partially supported by a grant of the University of Alberta.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号