首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Saroj Kumar 《Talanta》2007,71(3):1438-1440
Horseradish peroxidase (HRP) and glucose oxidase (GOD) were immobilized by sunlight onto the photoreactive cellulose membrane prepared by the reaction of cellulose membrane with 1-fluoro-2-nitro-4-azidobenzene (FNAB). A correlation between sunlight intensity and immobilization was studied. Sunlight intensity required for optimum immobilization was found to be 21,625 lux beyond which no appreciable increase in immobilization was observed. Around 2.5-fold increase in absorbance value was observed when HRP immobilization was carried out by sunlight than in dark or on untreated surface. Sunlight exposure gave better immobilization compared to 365 nm UV light. Thus, sunlight could be used as a potential alternative to UV light for immobilization of biomolecules such as carbohydrate, DNA or protein.  相似文献   

2.
Luan  Qian  Zhang  Hao  Lei  Yujie  Cai  Yixin  Bao  Yuping  Li  Yan  Tang  Hu  Li  Xiuting 《Cellulose (London, England)》2021,28(9):5735-5744
Cellulose - In this study, regenerated cellulose-based macrogels with abundant carboxyl groups and interconnected microporous structures were synthesized from cellulose fibers (CFs)/cellulose...  相似文献   

3.
Tyrosinase is used to eliminate phenolic compounds from wastewater. Therefore, its immobilization is important to enhance catalytic efficiency. Papery materials are of particular interest for use as support for enzyme immobilization since the porous microstructure of fiber networks in papers can provide a suitable reaction environment, especially in flow-type catalytic reactions. However, immobilization of protein onto papery structure needs chemical modifications in severe conditions. To overcome this challenge, a cellulosic paper was directly amine-functionalized in moderate conditions and used for tyrosinase immobilization. The support was pretreated with HCl (0.5 N) solution and then sequentially immersed in ethylenediamine (EDA), glutaraldehyde solution (2% v/v) and the crude enzyme. In comparison with the untreated one, the immobilized enzyme on the EDA-treated support offered a 3.7-fold increase in activity. The FTIR spectra as well as EDX analysis proved the presence of amine groups in the cellulosic paper and also covalent immobilization of tyrosinase on the modified support. When considering the effect of pH on the activity at 25 °C, a maximum relative activity of 134% at pH 6 was revealed. Similarly, evaluating the effect of temperature on the activity at pH 7 displayed a maximum relative activity of 152% at 35 °C. The immobilized enzyme was suitable for use for more than four cycles to degrade a phenolic compound at severe pH and temperature conditions. Additionally, the immobilized enzyme was active after treatment of the surface at different pHs and temperatures for 105 min. The chemically modified cellulosic paper can be used as a support for enzyme immobilization.  相似文献   

4.
Nanocomposites of nanocrystalline cellulose for enzyme immobilization   总被引:1,自引:0,他引:1  
We describe the synthesis, characterization and use of a composite material made of a renewable source and metallic nanoparticles for biosensing applications. Nanocrystalline cellulose (NCC) is a product isolated from natural cellulose fibers, which is of approximately 100 nm long and 10 nm wide in size. We augmented the surface area and tailored the chemical affinity of NCC by optimally dressing it with gold nanoparticles (AuNPs). The deposition of AuNPs on NCC was controlled by using cationic polyethylenimine (PEI) at different pHs. AuNPs were thiol-functionalized using different linkers prior to enzyme immobilization. The enzyme (glucose oxidase or GOx) was conjugated on the composite by carbodiimide coupling, and subsequent activation of linker-carboxylic acid group. Our results showed that GOx was attached to the surface of the NCC nanocomposite. Moreover, the amount of GOx loaded onto the support depended on the length of the thiol-linker used. The lower value (20.3 mg/mg of support) was obtained with the longer thiol-linker (11 carbon chain) compared to 25.2 mg/mg of support for the smaller thiol-linker (3 carbon chain).  相似文献   

5.
Dityrosine cross-links are widely observed in nature in structural proteins such as elastin and silk. Natural oxidative cross-linking between tyrosine residues is catalyzed by a diverse group of metalloenzymes. Dityrosine formation is also catalyzed in vitro by metal-peptide complexes such as Gly-Gly-His-Ni(II). On the basis of these observations, a system was developed to specifically and covalently surface immobilize proteins through dityrosine cross-links. Methacrylate monomers of the catalytic peptide Gly-Gly-His-Tyr-OH (GGHY) and the Ni(II)-chelating group nitrilotriacetic acid (NTA) were copolymerized with acrylamide into microbeads. Green fluorescent protein (GFP), as a model protein, was genetically tagged with a tyrosine-modified His6 peptide on its carboxy terminus. GFP-YGH6, specifically associated with the NTA-Ni(II) groups, was covalently coupled to the bead surface through dityrosine bond formation catalyzed by the colocalized GGHY-Ni(II) complex. After extensive washing with EDTA to disrupt metal coordination bonds, we observed that up to 75% of the initially bound GFP-YGH6 remained covalently bound to the bead while retaining its structure and activity. Dityrosine cross-linking was confirmed by quenching the reaction with free tyrosine. The method may find particular utility in the construction and optimization of protein microarrays.  相似文献   

6.
A bio-ink for covalent deposition of thermostable, high affinity biotin-binding chimeric avidin onto sol-gel substrates was developed. The bio-ink was prepared from heterobifunctional crosslinker 6-maleimidohexanoic acid N-hydroxysuccinimide which was first reacted either with 3-aminopropyltriethoxysilane or 3-aminopropyldimethylethoxysilane to form silane linkers 6-maleimide-N-(3-(triethoxysilyl)propyl)hexanamide or -(ethoxydimethylsilyl)propyl)-hexanamide. C-terminal cysteine genetically engineered to chimeric avidin was reacted with the maleimide group of silane linker in methanol/PBS solution to form a suspension, which was printed on sol-gel modified PMMA film. Different concentrations of chimeric avidin and ratios between silane linkers were tested to find the best properties for the bio-ink to enable gravure or inkjet printing. Bio-ink prepared from 3-aminopropyltriethoxysilane was found to provide the highest amount of active immobilized chimeric avidin. The developed bio-ink was shown to be valuable for automated fabrication of avidin-functionalized polymer films.  相似文献   

7.
8.
Activated cellulose membrane was prepared by a simple photochemical reaction at 365 nm in 12 min using a photolinker, 1-fluoro-2-nitro-4-azidobenzene. XPS analysis of the activated cellulose membrane confirmed the presence of nitrogen and fluorine in the ratio of 2:1. Immobilization of a protein molecule onto the activated membrane occurred in 2 h at 37 °C. In contrast, no appreciable immobilization occurred onto the untreated surface. Disappearance of the fluorine peak in the XPS spectra of membrane having immobilized HRP confirmed covalent binding of the protein onto the activated membrane. Invertase was also immobilised onto the activated membrane and used in a flow through reactor system for conversion of sucrose to glucose and fructose. Immobilized invertase was found to be stable for at least 72 h of continuous run. The kinetic parameters of the enzyme reaction, Michaelis constant (Km) and Vmax value of immobilized invertase was studied. The activated membrane when used in an ELISA procedure to detect immunoglobulins in human sera, showed around 2.6-fold higher sensitivity than the untreated membrane. The activated cellulose membrane has the potential for versatile applications such as in diagnostics, in flow reactor system for an enzyme-catalysed reaction and in membrane based affinity chromatography.  相似文献   

9.
In the series of soluble and film-forming aminocelluloses for application as enzyme-compatible support matrices, novel derivatives with xylylene diamine residues selectively at C6 and solubilizing carbanilate groups were synthesized. Synthesis of these aminocelluloses was successful in three reaction steps starting from cellulose (Avicel PH 101) via tosylcellulose with degree of substitution of 0.88 (preferably at C6) and tosylcellulose carbanilate. Using a 10-fold excess of xylylene diamine, only one amino group of the diamine reacts during the nucleophilic substitution of the tosylate groups. In the last step, the influence of the structure of the starting xylylene diamine isomers and of the reaction conditions on the degree of substitution of the tosylate, carbanilate and xylylene diamino groups in the final polymer, on the occurrence of side reactions and on the polymer solubility was studied. All xylylene diamino tosylcellulose carbanilates are soluble in DMA, DMSO and DMF in never dried state and form transparent films on glass surfaces. These films are promising support matrices for enzyme immobilization because of their characteristic topography, as is shown by atomic force microscopy examinations of the film surfaces.  相似文献   

10.
Immobilization of a protease, Flavourzyme, by covalent binding on various carriers was investigated. Lewatit R258-K, activated with glutaraldehyde, was selected among the tested carriers, because of the highest immobilized enzyme activity. The optimization of activation and immobilization conditions was performed to obtain high recovery yield. The activity recovery decreased with increasing carrier loading over an optimal value, indicating the inactivation of enzymes by their reaction with uncoupled aldehyde groups of carriers. The buffer concentrations for carrier activation and enzyme immobilization were optimally selected as 500 and 50 mM, respectively. With increasing enzyme loading, the immobilized enzyme activity increased, but activity recovery decreased. Immobilization with a highly concentrated enzyme solution was advantageous for both the immobilized enzyme activity and activity recovery. Consequently, the optimum enzyme and carrier loadings for the immobilization of Flavourzyme were determined as 1.8 mg enzyme/mL and 0.6 g resin/mL, respectively.  相似文献   

11.
Bora U  Sharma P  Kumar S  Kannan K  Nahar P 《Talanta》2006,70(3):624-629
Polycarbonate—a thermostable polymer is activated by a simple and rapid method using a photolinker, 1-fluoro-2-nitro-4-azidobenzene (FNAB) for covalent immobilization of a biomolecule. Horseradish peroxidase (HRP) is used as a model enzyme to check the efficacy of the activated surface. HRP is immobilized on the activated polycarbonate surface without addition of any reagent or catalyst and is found to give 2-2.5-fold increase in absorbance with the substrate as compared to the directly adsorbed enzyme. Photochemical attachment of FNAB to the PC surface is confirmed by X-ray photoelectron spectroscopy (XPS), which shows the presence of nitrogen and fluorine in the ratio of 2:1 in the activated polycarbonate. Disappearance of fluorine peak in the XP spectra of PC bound enzyme further confirms the covalent binding of HRP, through displacement of fluorine moiety of the activated PC by the amino group of the protein. Optimized concentration of the photolinker is found as 6 μmol of FNAB per well and time of photo irradiation is 8 min for activation of a PCR polycarbonate plate. PC bound HRP has shown enhanced thermal and storage stability. Kinetic studies of the immobilized HRP shows improved catalytic activity. The potential application of activated polycarbonate surface includes immobilization of biomolecules for biosensors, immunoassays, and protein and DNA micro-arrays. Due to the stability of the polycarbonate at high temperature, the activated polycarbonate has an advantage for immobilization of thermostable biomolecule such as thermostable enzyme for reaction at elevated temperature.  相似文献   

12.
The major objective of the work was to develop a heterogeneous modification method for attachment of reactive groups, suitable for covalent immobilization of active biomolecules on the surface of polysulfone ultrafilters without loss of membrane selectivity. For applying a polymer specific activation chemistry, the materials of commercial “polysulfone” UF membranes were identified using elemental analysis along with 1H NMR, FTIR-ATR and UV spectroscopy. Heterogeneous photoinitiated graft polymerization was realized using acrylic acid (AA) as model monomer and as carrier of reactive groups. Polymer structure (polysulfone, PSf, or polyethersulfone, PESf), coating with photoinitiator (benzophenone, BP, or benzoylbenzoic acid, BPC) and UV excitation energy (λexc220> 300 or 350 nm) were the major parameters. Grafted polyAA (g-PAA) could be obtained under almost all conditions but with largely varying yields (DG). However, only with λexc350 nm, polymer and pore degradation could be excluded. A new selective initiation of graft polymerization onto PSf, H-abstraction by photoexcited BP derivatives from the methyl side groups, thus avoiding polymer chain scission, was proved indirectly. Modified structures were characterized spectroscopically, including visualization with SFM of laterally patterned surfaces generated by UV irradiation through a mask. UF tests of PSf-g-PAA and PESf-g-PAA UF membranes (DG 100…150 μg/cm2), prepared under “mildly degrading” conditions (λexc300 nm), indicated only slight permeability and selectivity changes compared with unmodified samples. Selective PSf functionalization (BPC coating, λexc350 nm; DG 5 μg/cm2) caused flux reductions and dextran selectivity increases by factors of 1.3. Covalent immobilization onto g-PAA-functionalized and carbodiimide-activated PSf or PESf membrane surfaces was studied with a protein (BSA), an enzyme (invertase, INV), an antibody-enzyme (IgG-POD) conjugate, and a peptide (“PC1”) as specific antigen of a monoclonal antibody. High binding capacities, up to 40 fold compared with a flat unmodified surface, were detected either directly (BSA) or indirectly via specific activity/binding assays (INV, IgG-POD, “PC1”). This indicated an increased outer membrane surface area due to multifunctional reactive and hydrophilic grafted polymer chains.  相似文献   

13.
An isocyanide derivative of nylon, polyisonitrile-nylon (1,2), was used as a starting material whereby, through a series of modification reactions, different chemically reactive functional groups could be introduced on the polyamide backbone. The chemistry employed allowed for considerable flexibility in the choice of procedures for covalent fixation of proteins, all starting from the same chemically reactive parent polymer, polyisonitrile-nylon. Thus, polyisonitrilenylon could be used directly for the immobilization of enzymes via fourcomponent condensation reactions. The isocyanide functional groups of the parent polymer could be transformed, by treatment with bromine, into the strongly electrophilic dibromoisocyanide (—N=CBrb2) groups. The selectivity of the —N=CBrb2 group toward the various functional groups present in proteins could be regulated by appropriate control of the pH of the coupling reaction. Dibromoisocyanide-nylon was also further modified into other types of chemically reactive nylon derivatives.  相似文献   

14.
Macroporous conducting polymer films were prepared by the electrochemical copolymerization of 3-methylthiophene and thiophene-3-acetic acid on the ITO-coated glass plates bearing different sizes of polystyrene template particles, and enzyme electrodes were fabricated by covalent immobilization of glucose oxidase on the macroporous copolymer films. It was found that the doping level and conductivity of the copolymer films was significantly affected by the treatment with solvent to remove the polystyrene particles, which was considered to result in deterioration in amperometric glucose-responding property of the enzyme electrodes fabricated with the copolymer films. Three-dimensionally ordered macroporous structure on the copolymer films led to enhancement of amperometric response of the enzyme electrodes, and this effect was attributed to the geometry of the interconnected channel structure formed by the linkage of macropores. It was suggested that the amperometric response of the enzyme electrodes was determined by whether the interconnected channel structure on the copolymer films had long distance regularity and a proper size to allow the enzyme and electron-mediator molecules to penetrate into the interior pores of the copolymer film. In particular, the interconnected channel structure seemed to play an important role in the electron-transfer reaction between the mediator molecules and the surface of electrodes.  相似文献   

15.
Free-standing nanogold membranes as scaffolds for enzyme immobilization   总被引:5,自引:0,他引:5  
We demonstrate herein the formation of a free-standing gold nanoparticle membrane and its use in the immobilization of the enzyme, pepsin. The nanogold membrane is synthesized by the spontaneous reduction of aqueous chloroaurate ions at the liquid-liquid interface by the bifunctional molecule bis(2-(4-aminophenoxy)ethyl) ether (DAEE) taken in chloroform. This process results in the formation of a robust, malleable free-standing nanogold membrane consisting of gold nanoparticles embedded in a polymeric background. Recognizing that gold nanoparticles are excellent candidates for immobilization of enzymes, we have immobilized pepsin on the nanogold membrane, leading to a new class of biocatalyst. A highlight of the new pepsin-nanogold biocatalyst is the ease with which separation from the reaction medium may be achieved. The catalytic activity of pepsin in the bioconjugate was comparable to that of the free enzyme in solution. The pepsin-nanogold membrane bioconjugate material exhibited excellent biocatalytic activity over 10 successive reuse cycles as well as enhanced pH, temperature, and temporal stability.  相似文献   

16.
17.
18.
19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号