首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Two new triterpenoid saponins, gledistside A ( 1 ) and gledistside B ( 2 ), isolated from the fruits of Gledistsia dolavayi Franch., were characterized as the 3,28‐O‐bisdesmoside of echinocystic acid acylated with monoterpene carboxylic acids. On the basis of spectroscopic and chemical evidence, their structures were elucidated as 3‐O‐β‐D ‐xylopyranosyl‐(1→2)‐α‐L ‐arabinopyranosyl‐(1→6)‐β‐D ‐glucopyranosyl‐28‐O‐β‐D ‐xylopyranosyl‐(1→3)‐β‐D ‐xylopyranosyl‐(1→4)‐[β‐D ‐galactopyranosyl‐(1→2)]‐α‐L ‐rhamnopyranosyl‐(1→2)‐{6‐O‐[2,6‐dimethyl‐6(S)‐hydroxy‐2‐trans‐2,7‐octadienoyl]}‐β‐D ‐glucopyranosylechinocystic acid ( 1 ) and 3‐O‐β‐D ‐xylopyranosyl‐(1→2)‐α‐L ‐arabinopyranosyl‐(1→6)‐β‐D ‐glucopyranosyl‐28‐O‐β‐D ‐xylopyranosyl‐(1→3)‐β‐D ‐xylopyranosyl‐(1→4)‐[β‐D ‐galactopyranosyl‐(1→2)]‐α‐L ‐rhamnopyranosyl‐(1→2)‐{6‐O‐[2‐hydroxymethyl‐6‐methyl‐6(S)‐hydroxy‐2‐trans‐2,7‐octadienoyl]}‐β‐D ‐glucopyranosylechinocystic acid ( 2 ). The complete 1H and 13C assignments of saponins 1 and 2 were achieved on the basis of 2D NMR spectra including HMQC‐TOCSY, TOCSY, 1H–1H COSY, HMBC, ROESY and HMQC spectra. Copyright © 2002 John Wiley & Sons, Ltd.  相似文献   

2.
Four new ursane‐type saponins, monepalosides C–F, together with a known saponin, mazusaponin II, were isolated from Morina nepalensis var. alba Hand.‐Mazz. Their structures were determined to be 3‐O‐α‐L ‐arabinopyranosyl‐(1 → 3)‐&[alpha;‐L ‐rhamnopyranosyl‐(1 → 2)]‐α‐L ‐arabinopyranosylpomolic acid 28‐O‐β‐D ‐glucopyranosyl‐(1 → 6)‐β‐D ‐glucopyranoside (monepaloside C, 1 ), 3‐O‐α‐L ‐arabinopyranosyl‐(1 → 3)‐&[alpha;‐L ‐rhamnopyranosyl‐(1 → 2)]‐β‐D ‐xylopyranosylpomolic acid 28‐O‐β‐D ‐glucopyranosyl‐(1 → 6)‐β‐D ‐glucopyranoside (monepaloside D, 2 ), 3‐O‐α‐L ‐arabinopyranosyl‐(1 → 3)‐&[beta;‐D ‐glucopyranosy‐(1 → 2)]‐α‐L ‐arabinopyranosylpomolic acid 28‐O‐β‐D ‐glucopyranosyl‐(1 → 6)‐β‐D ‐glucopyranoside (monepaloside E, 3 ) and 3‐O‐β‐D ‐xylopyranosylpomolic acid 28‐O‐β‐D ‐glucopyranoside (monepaloside F, 4 ) on the basis of chemical and spectroscopic evidence. 2D NMR techniques, including 1H–1H COSY, HMQC, 2D HMQC‐TOCSY, HMBC and ROESY, and selective excitation experiments, including SELTOCSY and SELNOESY, were utilized in the structure elucidation and complete assignments of 1H and 13C NMR spectra. Copyright © 2002 John Wiley & Sons, Ltd.  相似文献   

3.
The chemical study of Sechium mexicanum roots led to the isolation of the two new saponins {3‐O‐β‐D ‐glucopyranosyl (1 → 3)‐β‐D ‐glucopyranosyl‐2β,3β,16α,23‐tetrahydroxyolean‐12‐en‐28‐oic acid 28‐O‐α‐L ‐rhamnopyranosyl‐(1 → 3)‐β‐D ‐xylopyranosyl‐(1 → 4)‐α‐L ‐rhamnopyranosyl‐(1 → 2)‐α‐L ‐arabinopyranoside} (1) and {3‐O‐β‐D ‐glucopyranosyl (1 → 3)‐β‐D ‐glucopyranosyl‐2β,3β,16α,23‐tetrahydroxyolean‐12‐en‐28‐oic acid 28‐O‐α‐L ‐rhamnopyranosyl‐(1 → 3)‐β‐D ‐xylopyranosyl‐(1 → 4)‐[β‐D ‐apiosyl‐(1 → 3)]‐α‐L ‐rhamnopyranosyl‐(1 → 2)‐α‐L ‐arabinopyranoside} (2), together with the known compounds {3‐O‐β‐D ‐glucopyranosyl‐(1 → 3)‐β‐D ‐glucopyranosyl‐2β,3β,6β,16α,23‐pentahydroxyolean‐12‐en‐28‐oic acid 28‐O‐α‐L ‐rhamnopyranosyl‐(1 → 3)‐β‐D ‐xylopyranosyl‐(1 → 4)‐α‐L ‐rhamnopyranosyl‐(1 → 2)‐α‐L ‐arabinopyranoside} (3), tacacosides A1 (4) and B3 (5). The structures of saponins 1 and 2 were elucidated using a combination of 1H and 13C 1D‐NMR, COSY, TOCSY, gHMBC and gHSQC 2D‐NMR, and FABMS of the natural compounds and their peracetylated derivates, as well as by chemical degradation. Compounds 1–3 are the first examples of saponins containing polygalacic and 16‐hydroxyprotobasic acids found in the genus Sechium, while 4 and 5, which had been characterized partially by NMR, are now characterized in detail. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   

4.
A new prenylated benzopyrancarboxylic acid, 1a (3,4‐dihydro‐5‐hydroxy‐2,7‐dimethyl‐8‐(2‐methyl‐2‐butenyl)‐ 2‐(4‐methyl‐1, 3‐pentadienyl)‐2H‐1‐benzopyran‐6‐carboxylic acid) was isolated from Peperomia amplexicaulis and fully characterized by 1D and 2D NMR and high‐resolution mass spectrometry. In the course of this investigation, the structure of a related compound (minus the carboxylic acid group) which was previously assigned as 2b was corrected to structure 1b . Copyright © 2003 John Wiley & Sons, Ltd.  相似文献   

5.
Four new prenylindole derivatives, (R)‐6‐(2,3‐dihydroxy‐3‐methylbutyl)indole (1), (R)‐6‐(2,3‐dihydroxy‐3‐methylbutyl)indolin‐2‐one (2), and an unseparated mixture of (Z)‐6‐(4‐hydroxy‐3‐methylbut‐2‐en‐1‐yl)indolin‐2‐one (3a) and (E)‐6‐(4‐hydroxy‐3‐methylbut‐2‐en‐1‐yl)indolin‐2‐one (3b) with a ratio of 3 : 2, were isolated from the culture broth of a streptomycete isolated from Ailuropoda melanoleuca feces. Their structures were elucidated on the basis of 1D and 2D NMR spectroscopic techniques. The absolute configuration of 1 was determined by Mosher's method. Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   

6.
Two new acylated flavonol glycosides, 3‐O‐{[2‐O‐β‐D ‐glucopyranosyl]‐3‐[O‐β‐D ‐glucopyranosyl]‐4‐[(6‐Op‐coumaroyl)‐O‐β‐D ‐glucopyranosyl]}‐α‐L ‐rhamnopyranosyl‐kaempferol 7‐O‐α‐L ‐rhamnopyranoside and 3‐O‐{2‐[(6‐Op‐coumaroyl)‐O‐β‐D ‐glucopyranosyl]‐3‐[O‐β‐D ‐glucopyranosyl]‐4‐[(6‐Op‐coumaroyl)‐O‐β‐D ‐glucopyranosyl]}‐α‐L ‐rhamnopyranosyl‐kaempferol 7‐O‐α‐L ‐rhamnopyranoside, trivially named as brauhenefloroside E (1) and F (2), respectively, were isolated from the fruits of Stocksia brauhica and their structures were elucidated using spectroscopic methods, including 2D NMR experiments. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   

7.
The revised structures of avenacosides A and B and a new sulfated steroidal saponin isolated from grains of Avena sativa L. were elucidated. Their structures and complete NMR assignments are based on 1D and 2D NMR studies and identified as nuatigenin 3‐O‐{α‐l ‐rhamnopyranosyl‐(1→2)‐[β‐D‐glucopyranosyl‐(1→4)]‐β‐d ‐glucopyranoside}‐26‐O‐β‐d ‐glucopyranoside (1), nuatigenin 3‐O‐{α‐l ‐rhamnopyranosyl‐(1→2)‐[β‐d ‐glucopyranosyl‐(1→3)‐β‐d ‐glucopyranosyl‐(1→4)]‐β‐d ‐glucopyranoside}‐26‐O‐β‐d ‐glucopyranoside (2), and nuatigenin 3‐O‐{α‐l ‐rhamnopyranosyl‐(1→2)‐[β‐d ‐6‐O‐sulfoglucopyranosyl‐(1→4)]‐β‐d ‐glucopyranoside}‐26‐O‐β‐d ‐glucopyranoside (3). Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   

8.
Extensive 1D (1H NMR, HBBD‐13C NMR, DEPT‐13C NMR) and 2D (COSY, TOCSY, NOESY, HMQC and HMBC) NMR analysis was used to characterize the structure of a new bisdesmoside saponin isolated from the methanol extract of stems of Cordia piauhiensis Fresen as 3β‐O‐[α‐L ‐rhamnopyranosyl‐(1 → 2)‐β‐D ‐glucopyranosyl]ursolic acid 28‐O‐[β‐D ‐glucopyranosyl‐(1 → 6)‐β‐D ‐glucopyranosyl] ester. Copyright © 2003 John Wiley & Sons, Ltd.  相似文献   

9.
Three new acacic acid derivatives, named coriariosides C, D, and E ( 1–3 ) were isolated from the roots of Albizia coriaria. Their structures were elucidated on the basis of extensive 1D‐ and 2D‐NMR studies and mass spectrometry as 3‐O‐[β‐D ‐xylopyranosyl‐(1 → 2)‐β‐D ‐fucopyranosyl‐(1 → 6)‐2‐(acetamido)‐2‐deoxy‐β‐D ‐glucopyranosyl]‐21‐O‐{(2E,6S)‐6‐O‐{4‐O‐[(2E,6S)‐2,6‐dimethyl‐ 6‐O‐(β‐D ‐quinovopyranosyl)octa‐2,7‐dienoyl]‐4‐O‐[(2E,6S)‐2,6‐dimethyl‐6‐O‐(β‐D ‐quinovopyranosyl)octa‐2,7‐dienoyl]‐β‐D ‐quinovopyranosyl}‐2,6‐dimethylocta‐2,7‐dienoyl}acacic acid 28‐O‐β‐D ‐xylopyranosyl‐(1 → 4)‐α‐L ‐rhamnopyranosyl‐(1 → 2)‐β‐D ‐glucopyranosyl ester ( 1 ), 3‐O‐{β‐D ‐fucopyranosyl‐(1 → 6)‐[β‐D ‐glucopyranosyl‐(1 → 2)]‐β‐D ‐glucopyranosyl}‐21‐O‐{(2E,6S)‐6‐O‐{4‐O‐[(2E,6S)‐2,6‐dimethyl‐6‐O‐(β‐D ‐quinovopyranosyl)octa‐2,7‐dienoyl]‐4‐O‐[(2E,6S)‐2,6‐dimethyl‐6‐O‐(β‐D ‐quinovopyranosyl)octa‐2,7‐dienoyl]‐β‐D ‐quinovopyranosyl}‐2,6‐dimethylocta‐2,7‐dienoyl}acacic acid 28‐O‐α‐L ‐rhamno pyranosyl‐(1 → 2)‐β‐D ‐glucopyranosyl ester ( 2 ), and 3‐O‐[β‐D ‐fucopyranosyl‐(1 → 6)‐β‐D ‐glucopyranosyl]‐21‐O‐{(2E,6S)‐6‐O‐{4‐O‐[(2E,6S)‐2,6‐dimethyl‐6‐O‐(β‐D ‐quinovopyranosyl)octa‐2,7‐dienoyl)‐β‐D ‐quinovopyranosyl]octa‐2,7‐dienoyl}acacic acid 28‐O‐β‐D ‐glucopyranosyl ester ( 3 ). Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   

10.
From the roots of three species of Acanthophyllum (Caryophyllaceae), two new gypsogenic acid glycosides, 1 and 2, were isolated, 1 from A. sordidum and A. lilacinum, 2 from A. elatius and A. lilacinum, together with three known saponins, glandulosides B and C, and SAPO50. The structures of 1 and 2 were established mainly by 2D NMR techniques as 23‐O‐β‐D ‐galactopyranosylgypsogenic acid‐28‐O‐β‐D ‐glucopyranosyl‐(1→3)‐[β‐D ‐glucopyranosyl‐(1→6)]‐β‐D ‐galactopyranoside (1) and gypsogenic acid‐28‐O‐β‐D ‐glucopyranosyl‐(1→3)‐[β‐D ‐glucopyranosyl‐(1→6)]‐β‐D ‐galactopyranoside (2). The cytotoxicity of several of these saponins was evaluated against two human colon cancer cell lines (HT‐29 and HCT 116). Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   

11.
From the stem bark of Tetrapleura tetraptera, two new oleanane‐type saponins, tetrapteroside A 3‐O‐{6‐O‐[(2E,6S)‐2,6‐dimethyl‐6‐hydroxyocta‐2,7‐dienoyl]‐β‐D ‐glucopyranosyl‐(1 → 2)‐β‐D ‐glucopyranosyl‐(1 → 3)‐β‐D ‐glucopyranosyl‐(1 → 4)‐[β‐D ‐glucopyranosyl‐(1 → 2)]‐β‐D ‐glucopyranosyl}‐3,27‐dihydroxyoleanolic acid (1), and tetrapteroside B 3‐O‐{ β‐D ‐glucopyranosyl‐(1 → 2)‐6‐O‐[(E)‐feruloyl]‐β‐D ‐glucopyranosyl‐(1 → 3)‐β‐D ‐glucopyranosyl‐(1 → 4)‐[β‐D ‐glucopyranosyl‐(1 → 2)]‐β‐D ‐glucopyranosyl}‐3,27‐dihydroxyoleanolic acid (2), were isolated. Further extractions from the roots led to the isolation of four known oleanane‐type saponins. Their structures were elucidated by the combination of mass spectrometry (MS), one and two‐dimensional NMR experiments. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   

12.
From the whole plant of Morina nepalensis var. alba Hand.‐Mazz., two new acylated flavonoid glycosides ( 1 and 2 ), together with four known flavonoid glycosides ( 3–6 ), were isolated. Their structures were determined to be quercetin 3‐O‐[2″′‐O‐(E)‐caffeoyl]‐α‐L ‐arabinopyranosyl‐(1→6)‐β‐D ‐galactopyranoside (monepalin A, 1 ), quercetin 3‐O‐[2″′‐O‐(E)‐caffeoyl]‐α‐L ‐arabinopyranosyl‐(1→6)‐β‐D ‐glucopyranoside (monepalin B, 2 ), quercetin 3‐O‐α‐L ‐arabinopyranosyl‐(1→6)‐β‐D ‐galactopyranoside (rumarin, 3 ), quercetin 3‐O‐β‐D ‐galactopyranoside ( 4 ), quercetin 3‐O‐β‐D ‐glucopyranoside ( 5 ) and apigenin 4O‐β‐D ‐glucopyranoside ( 6 ). Their structures were determined on the basis of chemical and spectroscopic evidence. Complete assignments of the 1H and 13C NMR spectra of all compounds were achieved from the 2D NMR spectra, including H–H COSY, HMQC, HMBC and 2D HMQC‐TOCSY spectra. Copyright © 2002 John Wiley & Sons, Ltd.  相似文献   

13.
A combination of homo‐ and heteronuclear 1D and 2D NMR techniques provided the assignment of the 1H and 13C resonances of the major component of a reaction product consisting of the two possible diastereomers of (5S)‐1‐[2‐(2‐hydroxyethyl)tetrahydropyran‐5‐yl]‐1H‐pyrimidine‐2,4‐dione and showed that the tetrahydropyranyl ring in the major 5S,2S‐isomer adopts the twist conformation. Copyright © 2002 John Wiley & Sons, Ltd.  相似文献   

14.
During a synthesis of 5‐amino‐4‐(6‐methoxy‐2‐methylpyridin‐3‐yl)‐3‐methyl‐1H‐pyrazole‐1‐carboxamide (see Scheme 1), a side‐reaction produced 3‐amino‐4‐(6‐methoxy‐2‐methylpyridin‐3‐yl)‐5‐methyl‐1H‐pyrazole‐1‐carboxamide as a by‐product that forms an equilibrium with the target‐compound. The structure of the by‐product was elucidated by the interpretation of 1D and 2D (HMQC, HMBC) NMR data where 1H‐15 N HMBC correlations revealed the position of carbamoyl group attachment on the pyrazole. Comparison of structures of the target‐compound and the by‐product showed that the latter resulted from N‐N migration of the carbamoyl group in the target‐compound. Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   

15.
Four new xanthones, 1‐methoxy‐3,7,8‐trihydroxyxanthone (1), 1‐methoxy‐4,7,8‐trihydroxyxanthone (2), 1‐methoxy‐4,7‐dihydroxyxanthone (3), and 1,4‐dimethoxy‐2,7‐dihydroxyxanthone (4) were isolated from the stems of Cratoxylum cochinchinense along with four known xanthones (5–8). The structures of new compounds were determined by extensive spectroscopic analyses, mainly 1D and 2D NMR and HRESIMS data. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   

16.
Two novel oligosaccharides, mono‐ and difructosyllactosucrose {[O‐β‐D ‐fructofuranosyl‐(2 → 1)]n‐β‐D ‐fructofuranosyl‐O‐[β‐D ‐galactopyranosyl‐(1 → 4)]‐α‐D ‐glucopyranoside, n = 1 and 2} were synthesized using 1F‐fructosyltransferase purified form roots of asparagus (Asparagus officinalis L.). Their 1H and 13C NMR spectra were assigned using several NMR techniques. The spectral analysis was started from two anomeric methines of aldose units, galactose and glucose, since they showed separate characteristic signals in their 1H and 13C NMR spectra. After assignments of all the 1H and 13C signals of two units of aldose, they were discriminated as galactose and glucose using proton–proton coupling constants. The HMBC spectrum revealed the galactose residue attached to C‐4 of glucose, fructose residue attached to the C‐1 of glucose, and further fructosyl fructose linkage extended from the glucosyl fructose residues. Copyright © 2002 John Wiley & Sons, Ltd.  相似文献   

17.
The reaction of 2,4‐pentanedione ( 1 ) with (R)‐(—)‐2‐phenylglycine methyl ester ( 2 ), (R)‐(—)‐2‐phenylglycinol ( 3 ) and the proteinogenic amino acids (2S,3R)‐(—)‐2‐amino‐3‐hydroxybutyric acid (L ‐threonine) ( 4 ) and (R)‐(—)‐2‐amino‐3‐mercaptopropionic acid (L ‐cysteine) ( 5 ) methyl esters was investigated. The corresponding enamines 6 , 7 and 8 were isolated and characterized spectroscopically whereas 9 , which is unstable, was transformed in situ into 13 . Treatment of 7 , 8 and 9 with boron trifluoride etherate afforded the new [1,4]oxazepines 10 , 11 and [1,4]thiazepine ( 12 ) as their BF3O? salts. The structures of the enamines and their corresponding seven‐membered heterocycles were assessed by 1D and 2D NMR spectroscopy. Variable‐temperature experiments revealed different molecular mobility behavior among these heterocycles. Copyright © 2003 John Wiley & Sons, Ltd.  相似文献   

18.
NMR spectroscopic studies are undertaken with derivatives of 2‐pyrazinecarboxylic acid. Complete and unambiguous assignment of chemical shifts (1H, 13C, 15N) and coupling constants (1H,1H; 13C,1H; 15N,1H) is achieved by combined application of various 1D and 2D NMR spectroscopic techniques. Unequivocal mapping of 13C,1H spin coupling constants is accomplished by 2D (δ,J) long‐range INEPT spectra with selective excitation. Phenomena such as the tautomerism of 3‐hydroxy‐2‐pyrazinecarboxylic acid are discussed. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   

19.
Two new indole‐diterpenoids 4b‐deoxy‐1′‐O‐acetylpaxilline (1) and 4b‐deoxypenijanthine A (2) were isolated from the fermentation broth and the mycelia of the soil fungus Penicillium sp. CM‐7, along with three known structurally related compounds, 1′‐O‐acetylpaxilline (3), paspaline (4) and 3‐deoxo‐4b‐deoxypaxilline (5). The structures of compounds 1 and 2 were elucidated by extensive spectroscopic methods, especially 2D NMR, and their absolute configurations were suggested on the basis of the circular dichroism spectral analysis and the NOESY data. Copyright © 2014 John Wiley & Sons, Ltd.  相似文献   

20.
Four new prenylated flavonoids, cudraflavanones E‐F (1–2) and cudraflavones F‐G (6–7), together with eight known compounds were isolated from the roots of Cudrania tricuspidata. The structures of new compounds were elucidated on the basis of extensive spectroscopic analyses, including 1D and 2D NMR, HRESIMS and CD. Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号