首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Sample preparation is a crucial step for the reliable and accurate analysis of both small molecule and biopolymers which often involves processes such as isolation, pre‐concentration, removal of interferences (purification), and pre‐processing (e.g., enzymatic digestion) of targets from a complex matrix. Gold nanoparticle (GNP)‐assisted sample preparation and pre‐concentration has been extensively applied in many analytical procedures in recent years due to the favorable and unique properties of GNPs such as size‐controlled synthesis, large surface‐to‐volume ratio, surface inertness, straightforward surface modification, easy separation requiring minimal manipulation of samples. This review article primarily focuses on applications of GNPs in sample preparation, in particular for bioaffinity capture and biocatalysis. In addition, their most common synthesis, surface modification and characterization methods are briefly summarized. Proper surface modification for GNPs designed in accordance to their target application directly influence their functionalities, e.g., extraction efficiencies, and catalytic efficiencies. Characterization of GNPs after synthesis and modification is worthwhile for monitoring and controlling the fabrication process to ensure proper quality and functionality. Parameters such as morphology, colloidal stability, and physical/chemical properties can be assessed by methods such as surface plasmon resonance, dynamic light scattering, ζ‐potential determinations, transmission electron microscopy, Taylor dispersion analysis, and resonant mass measurement, among others. The accurate determination of the surface coverage appears to be also mandatory for the quality control of functionality of the nanoparticles. Some promising applications of (functionalized) GNPs for bioanalysis and sample preparation are described herein.  相似文献   

2.
The application of chemical‐modified gold nanoparticles (GNPs) as chiral selector for the enantioseparation based on pseudostationary phase‐CEC (PSP‐CEC) is presented. GNPs modified by thiolated β‐CD were characterized by NMR and FT‐IR. The nanoparticle size was determined to be of 9.5 nm (+2.5 nm) by Transmission Electron Microscopy (TEM) and UV spectra. Four pairs of dinitrophenyl‐labeled amino acid enantiomers (DL‐Val, Leu, Glu and Asp) and three pairs of drug enantiomers (RS‐chlorpheniramine, zopiclone and carvedilol) were analyzed by using modified GNPs as the chiral selector in PSP‐CEC. Good theoretical plate number (up to 2.4×105 per meter) and separation resolution (up to 4.7) were obtained even with low concentration of modified GNPs (0.8–1.4 mg/mL). The corresponding concentration of β‐CD in the buffer was only 0.30?0.53 mM, which was much lower than the optimum concentration of 15 mM if pure β‐CD was used as chiral selector. Our results showed that thiolated β‐CD modified GNPs have more sufficient interaction with the analytes, resulting in significant enhancement of enantioseparation. The study shed light on potential usage of chemical modified GNPs as chiral selector for enantioseparation based on PSP‐CEC.  相似文献   

3.
Piñero MY  Bauza R  Arce L 《Electrophoresis》2011,32(11):1379-1393
CE has generated considerable interest in the research community since instruments were introduced by different trading companies in the 1990s. Nowadays, CE is popular due to its simplicity, speed, highly efficient separations and minimal solvent and reagent consumption; it can also be included as a useful technique in the nanotechnology field and it covers a wide range of specific applications in different fields (chemical, pharmaceutical, genetic, clinical, food and environmental). CE has been very well evaluated in research laboratories for several years, and different new approaches to improve sensitivity (one of the main drawbacks of CE) and robustness have been proposed. However, this technique is still not well accepted in routine laboratories for food analysis. Researching in data bases, it is easy to find several electrophoretic methods to determine different groups of analytes and sometimes they are compared in terms of sensitivity, selectivity, precision and applicability with other separation techniques. Although these papers frequently prove the potential of this methodology in spiked samples, it is not common to find a discussion of the well-known complexity of the matrices to extract analytes from the sample and/or to study the interferences in the target analytes. Summarizing, the majority of CE scientific papers focus primarily on the effects upon the separation of the analytes while ignoring their behavior if these analytes are presented in real samples.  相似文献   

4.
Capillary electrophoresis (CE) offers fast and high‐resolution separation of charged analytes from small injection volumes. Coupled to mass spectrometry (MS), it represents a powerful analytical technique providing (exact) mass information and enables molecular characterization based on fragmentation. Although hyphenation of CE and MS is not straightforward, much emphasis has been placed on enabling efficient ionization and user‐friendly coupling. Though several interfaces are now commercially available, research on more efficient and robust interfacing with nano‐electrospray ionization (ESI), matrix‐assisted laser desorption/ionization (MALDI) and inductively coupled plasma mass spectrometry (ICP) continues with considerable results. At the same time, CE‐MS has been used in many fields, predominantly for the analysis of proteins, peptides and metabolites. This review belongs to a series of regularly published articles, summarizing 248 articles covering the time between June 2016 and May 2018. Latest developments on hyphenation of CE with MS as well as instrumental developments such as two‐dimensional separation systems with MS detection are mentioned. Furthermore, applications of various CE‐modes including capillary zone electrophoresis (CZE), nonaqueous capillary electrophoresis (NACE), capillary gel electrophoresis (CGE) and capillary isoelectric focusing (CIEF) coupled to MS in biological, pharmaceutical and environmental research are summarized.  相似文献   

5.
6.
Mixed mode (MM) separation using a combination of MEKC and polyelectrolyte multilayer (PEM) coatings is herein reported for the separation of achiral and chiral analytes. Many analytes are difficult to separate by MEKC and PEM coatings alone. Therefore, the implementation of a MM separation provides several advantages for overcoming the limitations of these well‐established methods. In this study, it was observed that achiral separations using MEKC and PEM coatings individually resulted in partial resolution of eight very similar aryl ketones when the molecular micelle (sodium poly(N‐undecanoyl‐L ‐glycinate)) concentration was varied from 0.25 to 1.00% w/v and the bilayer number varied from 2 to 4. However, when MM separation was introduced, baseline resolution was achieved for all eight analytes. In the case of chiral separations, temazepam, aminoglutethimide, benzoin, benzoin methyl ether, and coumachlor were separated using the three separation techniques. For chiral separations, the chiral molecular micelle, sodium poly(N‐undecanoyl‐L ‐leucylvalinate), was employed at concentrations of 0.25–1.50% w/v for both MEKC and PEM coatings. Overall, the results revealed partial separation with MEKC and PEM coatings individually. However, MM separation enabled baseline separation of each chiral mixture. The separation of achiral and chiral compounds from different compound classes demonstrates the versatility of this MM approach.  相似文献   

7.
An approach that allows direct analysis of the ratio of S‐adenosylmethionine (SAM) and S‐adenosylhomocysteine (SAH) by using CE is presented. The analytes were extracted on phenylboronic acid phase and eluted with 100 mmol/L HCl. CE separation of the analytes took place in the transient isotachophoresis mode with addition of NaCl and meglumine to the samples. The sensitivity (S/N = 3) and quantification limit (S/N = 10) of the method were 0.07 and 0.2 μmol/L, respectively, using a silica capillary with 50 μm internal diameter and 30.5 cm total length. The BGE was 0.02 mol/L Tris with 1 mol/L HCOOH (pH 2.2), and the separation voltage was 15–17 kV. Accuracy of SAM and SAH analysis in urine was 96 and 105%, respectively; interday precision for the SAM/SAH ratio was within 6%. The theoretical plate number exceeded a million. Total analysis time was 8.5 min.  相似文献   

8.
Multiple labeling of nucleic acids by intercalative dyes is a promising method for ultrasensitive nucleic acid assays. The properties of the fast dissociation and instability of dye–DNA complexes may prevent from their wide applications in CE‐LIF nucleic acid analysis. Here, we describe an optimum CE focusing method by using appropriately paired sample and separation buffers, Tris‐glycine buffer and Tris‐glycine‐acetic acid buffer. The developed method was applied in both uncoated and polyacrylamide coated fused‐silica capillary‐based CE‐LIF analysis while the sample and separation buffers were conversely used. The complexes of intercalative dye benzoxazolium‐4‐pyridinium dimer and dsDNA were greatly focused (separation efficiency: 1.8 million theoretical plates per meter) by transient isotachophoresis mechanism in uncoated capillary, and moderately focused by transient isotachophoresis in combination of field amplified sample stacking and further stabilized by the paired buffer in polyacrylamide coated capillary. Based on the developed focusing strategy, an ultrasensitive DNA assay was developed for quantitation of calf thymus dsDNA (from 0.02 to 2.14 pM). By the use of an excitation laser power as low as 1 mW, the detection limits of calf thymus dsDNA (3.5 kb) are 7.9 fM in concentration and 2.4×10?22 mol (150 molecules) in mass. We further demonstrate that the non‐gel sieving CE‐LIF analysis of DNA fragments can be enhanced by the same strategy. Since the presented strategy can be applied to uncoated and coated capillaries and does not require special device, it is also reasonable to extend to the applications in chip‐based CE DNA analysis.  相似文献   

9.
《Analytical letters》2012,45(9):2039-2053
Abstract

In this study, a method for the separation and determination of basic analytes in aqueous capillary electrophoresis (CE) was developed based on high electric field strengths and ionic liquids (ILs). The resulting electric field strengths ranged from 500 to 1000 V/cm. Trishydroxymethylaminomethane (Tris) and sodium cholate (SC) were used as main electrolytes. The ionic liquids 1‐ethyl‐3‐methylimidazoium tetrafluoroborate (1E‐3MI‐TFB) and 1‐butyl‐3‐methylimidazoium tetrafluoroborate (1B‐3MI‐TFB) were used as modifiers to improve the separation efficiency and selectivity. It was shown that increasing the applied electric field strengths not only caused short analysis time, but also did not induce excessive Joule heating in the capillary when ionic liquids were used as modifiers. The susceptibility to high electric field of separation efficiency in capillary electrophoresis, with the effect of ionic liquids, was subsequently discussed, and the developed method was used to analyze three model analytes in Sinacalia tangutica. The accurate results illustrated that high electric field strength with the ionic liquids was feasible in CE.  相似文献   

10.
A review is presented of sample preparation and separation techniques for the determination of inorganic ions by ion chromatography (IC) and capillary electrophoresis (CE). Emphasis has been placed on those sample treatment methods which are specific to inorganic analysis, and the developments in separation methods which are discussed are those which enhance the capabilities of IC and CE to handle complex sample matrices. Topics discussed include solid-phase extraction for sample clean-up and preconcentration, dialytic methods, combustion methods, matrix-elimination IC, electrostatic IC, electrically polarised ion-exchange resins, electromigration sample preparation in CE, chromatographic sample preparation for CE, use of high-ionic strength background electrolytes, buffering of background electrolytes in CE, use of capillary electrochromatography for inorganic determinations, and methods for the manipulation of separation selectivity in both IC and CE. Finally, some possible future trends are discussed.  相似文献   

11.
Kok MG  de Jong GJ  Somsen GW 《Electrophoresis》2011,32(21):3016-3024
Analyte responses in CE‐ESI‐MS using negative ionization are frequently relatively low, thereby limiting sensitivity in metabolomics applications. In order to enhance the ionization efficiency of anionic metabolites, BGEs and sheath liquids (SLs) of various compositions were evaluated. Pressure‐induced infusion and CE‐MS experiments showed that addition of triethylamine (TEA) to the BGE and SL enhanced analyte intensities. A BGE consisting of 25 mM TEA (pH 11.7) and an SL of water–methanol (1:1, v/v) containing 5 mM TEA was selected, providing separation and detection of ten representative test metabolites with good reproducibility (migration time RSDs<1%) and linearity (R2>0.99). This BGE yielded lower limits of detection (0.7–9.1 μM) for most test compounds when compared with common CE‐MS methods using a BGE and SL containing ammonium acetate (NH4Ac) (25 and 5 mM, respectively). CE‐MS of human urine revealed an average amount of 231 molecular features in negative ionization mode when TEA was used in the BGE and SL, whereas 115 and 102 molecular features were found with an NH4Ac‐containing BGE and SL, employing a bare fused‐silica (BFS) and Polybrene‐dextran sulfate‐Polybrene (PB‐DS‐PB)‐coated capillary, respectively. With the CE‐MS method using TEA, about 170 molecular features were observed that were not detected with the NH4Ac‐based CE‐MS methods. For more than 82% of the molecular features that were detected with the TEA as well as the NH4Ac‐containg BGEs (i.e. common features), the peak intensities were higher using TEA with gain factors up to 7. Overall, the results demonstrate that BGEs and SLs containing TEA are quite favorable for the analysis of anionic metabolites in CE‐MS.  相似文献   

12.
毛细管电泳安培检测技术进展   总被引:1,自引:0,他引:1  
对毛细管电泳离柱和柱端安培检测方式、不同形式电极在安培检测中的应用、安培检测在芯片毛细管电泳中的应用、安培检测池等内容进行了总结和讨论 ,并预测了安培检测技术未来发展方向  相似文献   

13.
This paper presents the multiresidue determination of the series of quinolones regulated by the European Union (marbofloxacin, ciprofloxacin, danofloxacin, enrofloxacin, sarafloxacin, difloxacin, oxolinic acid and flumequine) in bovine and porcine plasma using capillary electrophoresis and liquid chromatography with ultraviolet detection (CE‐UV, LC‐UV), liquid chromatography–mass spectrometry and –tandem mass spectrometry (LC‐MS, LC‐MS/MS) methods. These procedures involve a sample preparation by solid‐phase extraction for clean‐up and preconcentration of the analytes before their injection into the separation system. All methods give satisfactory results in terms of linearity, precision, accuracy and limits of quantification. The suitability of the methods to determine quinolones was evaluated by determining the concentration of enrofloxacin and ciprofloxacin in real samples from pig plasma and cow plasma. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   

14.
采用毛细管电泳-电化学检测法(CE-ED)同时分离测定了中药杠板归中的阿魏酸、香草酸、槲皮素、咖啡酸、原儿茶酸等主要生物活性成分的含量。考察了工作电极电位、运行缓冲液的pH值和浓度、分离电压和进样时间等实验参数对实验结果的影响。在优化的实验条件下,以直径300 μm的碳圆盘电极为工作电极,检测电位为+0.95V(vs. SCE),在10mmol/L磷酸盐(pH 9.2)的运行缓冲溶液中,五个分析物能够在17min内实现很好的基线分离,被测物浓度与峰电流在3个数量级呈良好的线性,检测限(S/N=3)范围从7.1×10-8 到 9.3×10-8g mL-1。该方法已应用于实际样品的分析,样品处理简单,获得了令人满意的结果。  相似文献   

15.
CE offers the advantage of flexibility and method development options. It excels in the area of separation of ions, chiral, polar and biological compounds (especially proteins and peptides). Masking the active sites on the inner surface of a bare fused silica capillary wall is often necessary for CE separations of basic compounds, proteins and peptides. The use of capillary surface coating is one of the approaches to prevent the adsorption phenomena and improve the repeatability of migration times and peak areas of these analytes. In this study, new capillary coatings consisting of (i) derivatized polystyrene nanoparticles and (ii) derivatized fullerenes were investigated for the analysis of peptides and protein digest by CE. The coated capillaries showed excellent run‐to‐run and batch‐to‐batch reproducibility (RSD of migration time ≤0.5% for run‐to‐run and ≤9.5% for batch‐to‐batch experiments). Furthermore, the capillaries offer high stability from pH 2.0 to 10.0. The actual potential of the coated capillaries was tested by combining CE with MALDI‐MS for analysing complex samples, such as peptides, whereas the overall performance of the CE‐MALDI‐MS system was investigated by analysing a five‐protein digest mixture. Subsequently, the peak list (peptide mass fingerprint) generated from the mass spectra of each fraction was entered into the Swiss‐Prot database in order to search for matching tryptic fragments using the MASCOT software. The sequence coverage of analysed proteins was between 36 and 68%. The established technology benefits from the synergism of high separation efficiency and the structure selective identification via MS.  相似文献   

16.
In this work, a new physically adsorbed coating for CE is presented. This coating is based on a poly(N,N‐dimethylacrylamide‐co‐4‐(ethyl)‐morpholine methacrylamide) (DMA/MAEM) copolymer synthesized in our laboratory. It is demonstrated that the direction and magnitude of the EOF in CE can be modulated by varying the composition of the DMA/MAEM copolymer and the type and pH of the BGE. Moreover, the DMA/MAEM coating provides %RSDn = 5 values for migration times lower than 0.9% for the same capillary and day, whereas the %RSDn = 25 obtained for the interday assay was lower than 2.9%. The stability of the coating procedure is also tested between capillaries obtaining %RSDn = 15 values lower than 2.9%, demonstrating that this physically adsorbed copolymer gives rise to a stable and reproducible coating in CE. Finally, the usefulness of this new cationic copolymer as CE coating is demonstrated through different applications. Namely, it is demonstrated that the CE separation of basic proteins, nucleotides and organic acids is achieved in a fast and easy way by using the DMA/MAEM coated capillary. The use of fused bare silica capillaries did not allow the separation of these compounds under the same analytical conditions. These results demonstrate that this type of coating in CE provides the option of using BGEs that are useless when utilized together with bare silica capillaries making wider the application and possibilities of this analytical technique.  相似文献   

17.
The inhibition of the α‐glucosidase enzyme plays an important role in the treatment of diabetes mellitus. We have established a highly sensitive, fast, and convenient CE method for the characterization of the enzyme and inhibition studies of α‐glucosidase inhibitors. The separation conditions were optimized; the pH value and concentration of the borate‐based separation buffer were optimized in order to achieve baseline separation of p‐nitrophenyl‐α‐d ‐glucopyranoside and p‐nitrophenolate. The optimized method using 25 mM tetraborate buffer, pH 9.5, was evaluated in terms of repeatability, LOD, LOQ, and linearity. The LOD and LOQ were 0.32 and 1.32 μM for p‐nitrophenyl‐α‐d ‐glucopyranoside and 0.83 and 3.42 μM for p‐nitrophenolate, respectively. The value of the Michaelis–Menten constant (Km) determined for the enzyme is 0.61 mM, which is in good agreement with the reported data. The RSDs (n = 6) for the migration time was 0.67 and 1.83% for substrate and product, respectively. In the newly established CE method, the separation of the reaction analytes was completed in <4 min. The developed CE method is rapid and simple for measuring enzyme kinetics and for assaying inhibitors.  相似文献   

18.
Huie CW 《Electrophoresis》2003,24(10):1508-1529
A review of recent developments in theoretical as well as application studies concerning the use of organic solvents, either as purely nonaqueous solvents, hydro-organic mixtures, or a combination of an organic solvent with another organic modifier(s), in the sample matrix and/or separation buffer for effecting sample pretreatment and/or improving separation performances in capillary electrophoresis (CE) is presented. In particular, recent advances made in furthering the basic understanding of selectivity changes that occur in capillary zone electrophoresis due the presence of organic solvents in the separation medium, based on in-depth studies of fundamental processes, such as acid-base chemistry, ion-ion and ion-solvent interactions, were discussed in detail. The utilization of organic solvents for improving the resolution of highly challenging and important separations, i.e., those involving the separation of positional and optical isomers, was also critically reviewed. Furthermore, a comprehensive survey of the use of organic solvents for on-line sample pretreatment, e.g., minimizing aggregation and maximizing solubilization of hydrophobic analytes, improving concentration detection sensitivity for analytes via the use of sample stacking, was presented and discussed. Moreover, recent applications involving the use of organic solvents for improving the CE separations of a variety of molecular species with significance in various disciplines, including biological, environmental and pharmaceutical areas, were summarized and tabulated.  相似文献   

19.
Mercury speciation by CE: a review   总被引:2,自引:0,他引:2  
CE methods for the speciation of inorganic and organomercury compounds are reviewed. Sample preparation, separation conditions and detection modes are discussed. Efficient separation and sensitive determination of mercury species by CE typically involves complexation with various thiols, chromogenic and other chelating agents; however, some methods do not require complexation. Spectrophotometric detection based on UV-visible absorption is by far the most commonly used. Hyphenated techniques, such as CE/inductively coupled plasma (ICP)-MS, hydride generation coupled to ICP-MS or atomic fluorescence spectrometry and CE/atomic absorption spectrometry are gaining popularity due to their high sensitivity and selectivity. Last, but not least, the potential and applications of electrochemical methods for detection of separated mercury species are outlined.  相似文献   

20.
Because of the widespread use, increased application of new formulations and immense impact on organisms and ecology surfactants are still in the focus of analytical chemistry. The development of methods with higher selectivity and lower detection limits is important to meet the requirements of greater responsibility for health of people and environment. Efficient separation methods, like HPLC, GC and CE, in combination with sensitive detection, like MS, are to be preferred over collective techniques which can suffer from interfering components. A review on trace analysis of ionic and neutral surfactants including sample preparation steps is presented, considering especially those methods which provide information about homologous and isomeric distribution of surfactant mixtures. Examples for the determination of linear alkylbenzene sulfonates in river water by HPLC and CE are discussed to show the capability of these methods for environmental analyses. As future trends increased applications of LC/MS (very high sensitivity) and also of CE (robustness and possibility for rapid method development) can be predicted.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号