首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
In this paper, we study the existence and regularity of solutions to the Stokes and Oseen equations with nonhomogeneous Dirichlet boundary conditions with low regularity. We consider boundary conditions for which the normal component is not equal to zero. We rewrite the Stokes and the Oseen equations in the form of a system of two equations. The first one is an evolution equation satisfied by Pu, the projection of the solution on the Stokes space – the space of divergence free vector fields with a normal trace equal to zero – and the second one is a quasi-stationary elliptic equation satisfied by (IP)u, the projection of the solution on the orthogonal complement of the Stokes space. We establish optimal regularity results for Pu and (IP)u. We also study the existence of weak solutions to the three-dimensional instationary Navier–Stokes equations for more regular data, but without any smallness assumption on the initial and boundary conditions.  相似文献   

2.
In this paper, we consider the existence of global smooth solutions to 1D compressible isentropic Navier–Stokes equations with density‐dependent viscosity and free boundaries. The initial density ρ0W1,2n is bounded below away from zero and the initial velocity u0L2n. The viscosity coefficient µ is proportional to ρθ with 0<θ?1, where ρis the density. The existence and uniqueness of global solutions in Hi([0,1])(i = 1,2,4) have been established in (J. Math. Phys. 2009; 50 :023101; Meth. Appl. Anal. 2005; 12 :239–252; J. Differ. Equations 2008; 245:3956–3973; Commun. Pure Appl. Anal. 2008; 7 :373–381). By mathematical induction method, we will establish the existence of global smooth solutions to 1D compressible isentropic Navier–Stokes equations with density‐dependent viscosity and free boundaries when the initial data ρ0 and u0 are smooth. Copyright © 2011 John Wiley & Sons, Ltd.  相似文献   

3.
In this paper, we prove the existence and uniqueness of the weak solution of the one‐dimensional compressible Navier–Stokes equations with density‐dependent viscosity µ(ρ)=ρθ with θ∈(0, γ?2], γ>1. The initial data are a perturbation of a corresponding steady solution and continuously contact with vacuum on the free boundary. The obtained results apply for the one‐dimensional Siant–Venant model of shallow water and generalize ones in (Arch. Rational Mech. Anal. 2006; 182: 223–253). Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   

4.
A number of bounds upon the pressure are known to guarantee regularity of the solutions of the Navier–Stokes equations. Since the pressure is the potential whose source is the product of the velocity and its gradient, it is worth to consider bounds depending on the quotient of the pressure and some quantity measuring the size of this source. Estimates involving the ratio pressure–velocity are known. Our result includes the velocity gradient: if the ratio remains bounded for some r<1, so does the velocity and therefore it retains its regularity. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   

5.
This paper concerns the 3D Navier‐Stokes equations and prove an almost Serrin‐type regularity criterion in terms of one directional derivative of the pressure. Copyright © 2014 John Wiley & Sons, Ltd.  相似文献   

6.
In this paper we find sufficient conditions, involving only the pressure, that ensure the regularity of weak solutions to the Navier–Stokes equations. Conditions involving only the pressure were previously obtained in [7,4]. Following a remark in this last reference we improve, in particular, Kaniel's result [7]. Our condition can be seen at the light of the heuristic idea that the pressure behaves similarly to the modulus squared of the velocity. Copyright © 1999 John Wiley & Sons, Ltd.  相似文献   

7.
We show the existence of strong solutions for the nonhomogeneous Navier–Stokes equations in three‐dimensional domains with boundary uniformly of class C3. Under suitable assumptions, uniqueness is also proved. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   

8.
This paper is concerned with the stationary Navier–Stokes equation in the whole plane and in the two–dimensional exterior domain invariant under the action of the cyclic group of order 4, and gives a condition on the potentials yielding the external force, and on the boundary value, sufficient for the unique existence of a small solution equivariant with respect to the aforementioned cyclic group.  相似文献   

9.
We establish the wellposedness of the time‐independent Navier–Stokes equations with threshold slip boundary conditions in bounded domains. The boundary condition is a generalization of Navier's slip condition and a restricted Coulomb‐type friction condition: for wall slip to occur the magnitude of the tangential traction must exceed a prescribed threshold, independent of the normal stress, and where slip occurs the tangential traction is equal to a prescribed, possibly nonlinear, function of the slip velocity. In addition, a Dirichlet condition is imposed on a component of the boundary if the domain is rotationally symmetric. We formulate the boundary‐value problem as a variational inequality and then use the Galerkin method and fixed point arguments to prove the existence of a weak solution under suitable regularity assumptions and restrictions on the size of the data. We also prove the uniqueness of the solution and its continuous dependence on the data. Copyright © 2006 John Wiley & Sons, Ltd.  相似文献   

10.
In this paper, we will firstly extend the results about Jiu, Wang, and Xin (JDE, 2015, 259, 2981–3003). We prove that any smooth solution of compressible fluid will blow up without any restriction about the specific heat ratio γ. Then we prove the blow‐up of smooth solution of compressible Navier–Stokes equations in half space with Navier‐slip boundary. The main ideal is constructing the differential inequality. Copyright © 2017 John Wiley & Sons, Ltd.  相似文献   

11.
We establish the moment estimates for a class of global weak solutions to the Navier–Stokes equations in the half‐space. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   

12.
This study presents two computational schemes for the numerical approximation of solutions to eddy viscosity models as well as transient Navier–Stokes equations. The eddy viscosity model is one example of a class of Large Eddy Simulation models, which are used to simulate turbulent flow. The first approximation scheme is a first order single step method that treats the nonlinear term using a semi‐implicit discretization. The second scheme employs a two step approach that applies a Crank–Nicolson method for the nonlinear term while also retaining the semi‐implicit treatment used in the first scheme. A finite element approximation is used in the spatial discretization of the partial differential equations. The convergence analysis for both schemes is discussed in detail, and numerical results are given for two test problems one of which is the two dimensional flow around a cylinder. © 2008 Wiley Periodicals, Inc. Numer Methods Partial Differential Eq, 2009  相似文献   

13.
On a three–dimensional exterior domain Ω we consider the Dirichlet problem for the stationary Navier–Stokes system. We construct an approximation problem on the domain ΩR, which is the intersection of Ω with a sufficiently large ball, while we create nonlinear, but local artificial boundary conditions on the truncation boundary. We prove existence and uniqueness of the solutions to the approximating problem together with asymptotically precise pointwise error estimates as R tends to infinity.  相似文献   

14.
In this paper, we consider incompressible viscous fluid flows with slip boundary conditions. We first prove the existence of solutions of the unsteady Navier–Stokes equations in n‐spacial dimensions. Then, we investigate the stability, uniqueness and regularity of solutions in two and three spacial dimensions. In the compactness argument, we construct a special basis fulfilling the incompressibility exactly, which leads to an efficient and convergent spectral method. In particular, we avoid the main difficulty for ensuring the incompressibility of numerical solutions, which occurs in other numerical algorithms. We also derive the vorticity‐stream function form with exact boundary conditions, and establish some results on the existence, stability and uniqueness of its solutions. Copyright © 2007 John Wiley & Sons, Ltd.  相似文献   

15.
This note studies the well‐posedness of the fractional Navier–Stokes equations in some supercritical Besov spaces as well as in the largest critical spaces for β ∈ (1/2,1). Meanwhile, the well‐posedness for fractional magnetohydrodynamics equations in these Besov spaces is also studied. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   

16.
We develop and analyze a least‐squares finite element method for the steady state, incompressible Navier–Stokes equations, written as a first‐order system involving vorticity as new dependent variable. In contrast to standard L2 least‐squares methods for this system, our approach utilizes discrete negative norms in the least‐squares functional. This allows us to devise efficient preconditioners for the discrete equations, and to establish optimal error estimates under relaxed regularity assumptions. © 1999 John Wiley & Sons, Inc. Numer Methods Partial Differential Eq 15: 237–256, 1999  相似文献   

17.
In this paper, we study one‐dimensional compressible isentropic Navier–Stokes equations with density‐dependent viscosity. We can obtain the asymptotic stability of rarefaction waves for the compressible isentropic Navier–Stokes equations when the power of viscosity coefficient , which enlarge the range of α in the article [Jiu Q, Wang Y, Xin ZP, Communication in Partial Differential Equations 2011; 36: 602‐634]. Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   

18.
First the existence of global regular two‐dimensional solutions to Navier–Stokes equations in a bounded cylinder and for boundary slip conditions is proved. Next stability of sum of two dimensional and axially symmetric solutions is proved. Copyright © 2006 John Wiley & Sons, Ltd.  相似文献   

19.
In this per, we consider a special class of initial data for the three‐dimensional incompressible Navier–Stokes equations with gravity. We show that, under such conditions, the incompressible Navier‐Stokes equations with gravity are globally well posed, and the velocity minus gravity term has finite energy. The important features of the initial data is that the velocity fields minus gravity term are almost parallel to the corresponding vorticity fields in a very large space domain. Copyright © 2014 John Wiley & Sons, Ltd.  相似文献   

20.
We consider parabolic Dirac operators which do not involve fractional derivatives and use them to show the solvability of the in‐stationary Navier–Stokes equations over time‐varying domains. Copyright © 2005 John Wiley & Sons, Ltd.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号