首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
We investigate a multi‐dimensional isentropic hydrodynamic (Euler–Poisson) model for semiconductors, where the energy equation is replaced by the pressure–density relation p(n) . We establish the global existence of smooth solutions for the Cauchy–Neumann problem with small perturbed initial data and homogeneous Neumann boundary conditions. We show that, as t→+∞, the solutions converge to the non‐constant stationary solutions of the corresponding drift–diffusion equations. Moreover, we also investigate the existence and uniqueness of the stationary solutions for the corresponding drift–diffusion equations. Copyright © 2005 John Wiley & Sons, Ltd.  相似文献   

2.
This paper is devoted to Stokes and Navier–Stokes problems with non‐standard boundary conditions: we consider, in particular, the case where the pressure is given on a part of the boundary. These problems were studied by Bégue, Conca, Murat and Pironneau. They proved the existence of variational solutions, indicating that these were solutions of the initial non‐standard problems, if they are regular enough, but without specifying the conditions on the data which would imply this regularity. In this paper, first we show that the variational solutions, on supposing pressure on the boundary Γ2 of regularity H1/2 instead of H?1/2, have their Laplacians in L2 and, therefore, are solutions of non‐standard Stokes problem. Next, we give a result of regularity H2, which we generalize, obtaining regularities Wm, r, m∈?, m?2, r?2. Finally, by a fixed‐point argument, we prove analogous results for the Navier–Stokes problem, in the case where the viscosity νis large compared to the data. Copyright © 2002 John Wiley & Sons, Ltd.  相似文献   

3.
In this paper, we consider the existence of global smooth solutions to 1D compressible isentropic Navier–Stokes equations with density‐dependent viscosity and free boundaries. The initial density ρ0W1,2n is bounded below away from zero and the initial velocity u0L2n. The viscosity coefficient µ is proportional to ρθ with 0<θ?1, where ρis the density. The existence and uniqueness of global solutions in Hi([0,1])(i = 1,2,4) have been established in (J. Math. Phys. 2009; 50 :023101; Meth. Appl. Anal. 2005; 12 :239–252; J. Differ. Equations 2008; 245:3956–3973; Commun. Pure Appl. Anal. 2008; 7 :373–381). By mathematical induction method, we will establish the existence of global smooth solutions to 1D compressible isentropic Navier–Stokes equations with density‐dependent viscosity and free boundaries when the initial data ρ0 and u0 are smooth. Copyright © 2011 John Wiley & Sons, Ltd.  相似文献   

4.
We consider the blowup of solutions of the initial boundary value problem for a class of non‐linear evolution equations with non‐linear damping and source terms. By using the energy compensation method, we prove that when p>max{m, α}, where m, α and p are non‐negative real numbers and m+1, α+1, p+1 are, respectively, the growth orders of the non‐linear strain terms, damping term and source term, under the appropriate conditions, any weak solution of the above‐mentioned problem blows up in finite time. Comparison of the results with the previous ones shows that there exist some clear condition boundaries similar to thresholds among the growth orders of the non‐linear terms, the states of the initial energy and the existence and non‐existence of global weak solutions. Copyright © 2002 John Wiley & Sons, Ltd.  相似文献   

5.
We consider the periodic problem for 2‐fluid nonisentropic Euler‐Poisson equations in semiconductor. By choosing a suitable symmetrizers and using an induction argument on the order of the time‐space derivatives of solutions in energy estimates, we obtain the global stability of solutions with exponential decay in time near the nonconstant steady‐states for 2‐fluid nonisentropic Euler‐Poisson equations. This improves the results obtained for models with temperature diffusion terms by using the pressure functions pν in place of the unknown variables densities nν.  相似文献   

6.
We prove that solutions to the Monge‐Ampère inequality in ?n are strictly convex away from a singular set of Hausdorff (n‐1)‐dimensional measure zero. Furthermore, we show this is optimal by constructing solutions to det D2u = 1 with singular set of Hausdorff dimension as close as we like to n‐1. As a consequence we obtain W2,1 regularity for the Monge‐Ampère equation with bounded right‐hand side and unique continuation for the Monge‐Ampère equation with sufficiently regular right‐hand side. © 2015 Wiley Periodicals, Inc.  相似文献   

7.
In 1983, the second author [D. Maru?i?, Ars Combinatoria 16B (1983), 297–302] asked for which positive integers n there exists a non‐Cayley vertex‐transitive graph on n vertices. (The term non‐Cayley numbers has later been given to such integers.) Motivated by this problem, Feng [Discrete Math 248 (2002), 265–269] asked to determine the smallest valency ?(n) among valencies of non‐Cayley vertex‐transitive graphs of order n. As cycles are clearly Cayley graphs, ?(n)?3 for any non‐Cayley number n. In this paper a goal is set to determine those non‐Cayley numbers n for which ?(n) = 3, and among the latter to determine those for which the generalized Petersen graphs are the only non‐Cayley vertex‐transitive graphs of order n. It is known that for a prime p every vertex‐transitive graph of order p, p2 or p3 is a Cayley graph, and that, with the exception of the Coxeter graph, every cubic non‐Cayley vertex‐transitive graph of order 2p, 4p or 2p2 is a generalized Petersen graph. In this paper the next natural step is taken by proving that every cubic non‐Cayley vertex‐transitive graph of order 4p2, p>7 a prime, is a generalized Petersen graph. In addition, cubic non‐Cayley vertex‐transitive graphs of order 2pk, where p>7 is a prime and k?p, are characterized. © 2011 Wiley Periodicals, Inc. J Graph Theory 69: 77–95, 2012  相似文献   

8.
In this paper, we consider an initial‐boundary problem for a fourth‐order nonlinear parabolic equations. The problem as a model arises in epitaxial growth of nanoscale thin films. Based on the Lp type estimates and Schauder type estimates, we prove the global existence of classical solutions for the problem in two space dimensions. Copyright © 2007 John Wiley & Sons, Ltd.  相似文献   

9.
We prove local‐in‐time unique existence and a blowup criterion for solutions in the Triebel‐Lizorkin space for the Euler equations of inviscid incompressible fluid flows in ?n, n ≥ 2. As a corollary we obtain global persistence of the initial regularity characterized by the Triebel‐Lizorkin spaces for the solutions of two‐dimensional Euler equations. To prove the results, we establish the logarithmic inequality of the Beale‐Kato‐Majda type, the Moser type of inequality, as well as the commutator estimate in the Triebel‐Lizorkin spaces. The key methods of proof used are the Littlewood‐Paley decomposition and the paradifferential calculus by J. M. Bony. © 2002 John Wiley & Sons, Inc.  相似文献   

10.
A demonstration method is presented, which will ensure the existence of positive global solutions in time to the reaction–diffusion equation ?utu+up=0 in ?n×[0, ∞), for exponents p?3 and space dimensions n?3. This method does not require the initial value to have a specific uniform smallness condition, but rather to satisfy a bell‐like form. The method is based on a specific upper solution, which models the diffusion process of the heat equation. The upper solution is not self‐similar, but does have a self‐similar‐like form. After transforming the reaction–diffusion problem into an equivalent one, whose initial value is uniformly very small, a local solution is obtained in the time interval [0, 1] by the use of this upper solution. This local solution is then extended to [0, ∞) through an infinite sequence of extensions. At each step, an appropriate change of variables will transform the extension into a problem nearly identical to the local problem in [0, 1]. These transformations exploit the diffusive and self‐similar‐like nature of the upper solution. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   

11.
12.
We consider the MAX k‐CUT problem on random graphs Gn,p. First, we bound the probable weight of a MAX k‐CUT using probabilistic counting arguments and by analyzing a simple greedy heuristic. Then, we give an algorithm that approximates MAX k‐CUT in expected polynomial time, with approximation ratio 1 + O((np)‐1/2). Our main technical tool is a new bound on the probable value of Frieze and Jerrum's semidefinite programming (SDP)‐relaxation of MAX k‐CUT on random graphs. To obtain this bound, we show that the value of the SDP is tightly concentrated. As a further application of our bound on the probable value of the SDP, we obtain an algorithm for approximating the chromatic number of Gn,p, 1/np ≤ 0.99, within a factor of O((np)1/2) in polynomial expected time, thereby answering a question of Krivelevich and Vu. We give similar algorithms for random regular graphs. The techniques for studying the SDP apply to a variety of SDP relaxations of further NP‐hard problems on random structures and may therefore be of independent interest. For instance, to bound the SDP we estimate the eigenvalues of random graphs with given degree sequences. © 2005 Wiley Periodicals, Inc. Random Struct. Alg., 2006  相似文献   

13.
In this paper, we study the higher‐order semilinear parabolic equation where m, p>1 and $a\,\in\,\mathbb{R}$. For p>1+2m/N, we prove that the global existence of mild solutions for small initial data with respect to some norm. Some of those solutions are proved to be asymptotic self‐similar. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   

14.
This paper is concerned with global existence and asymptotic behavior of H1 solutions to the Cauchy problem of one‐dimensional full non‐Newtonian fluids with the weighted small initial data. We then obtain the global existence of Hi(i = 2,4) solutions and their asymptotic behavior for the system. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   

15.
We study the initial value problem for the generalized Boussinesq equation and prove existence of local and global solutions with singular initial data in weak-Lp spaces. Our class of initial data for global existence is larger than that of Cho and Ozawa (2007) [7]. Long time behavior results are obtained and a scattering theory is proved in that framework. With more structure, we show Sobolev H1 and Lorentz-type L(p,q) regularity properties for the obtained solutions. The approach employed is unified for all dimensions n?1.  相似文献   

16.
We consider the random 2‐satisfiability (2‐SAT) problem, in which each instance is a formula that is the conjunction of m clauses of the form xy, chosen uniformly at random from among all 2‐clauses on n Boolean variables and their negations. As m and n tend to infinity in the ratio m/n→α, the problem is known to have a phase transition at αc=1, below which the probability that the formula is satisfiable tends to one and above which it tends to zero. We determine the finite‐size scaling about this transition, namely the scaling of the maximal window W(n, δ)=(α?(n,δ), α+(n,δ)) such that the probability of satisfiability is greater than 1?δ for α<α? and is less than δ for α>α+. We show that W(n,δ)=(1?Θ(n?1/3), 1+Θ(n?1/3)), where the constants implicit in Θ depend on δ. We also determine the rates at which the probability of satisfiability approaches one and zero at the boundaries of the window. Namely, for m=(1+ε)n, where ε may depend on n as long as |ε| is sufficiently small and |ε|n1/3 is sufficiently large, we show that the probability of satisfiability decays like exp(?Θ(nε3)) above the window, and goes to one like 1?Θ(n?1|ε|?3 below the window. We prove these results by defining an order parameter for the transition and establishing its scaling behavior in n both inside and outside the window. Using this order parameter, we prove that the 2‐SAT phase transition is continuous with an order parameter critical exponent of 1. We also determine the values of two other critical exponents, showing that the exponents of 2‐SAT are identical to those of the random graph. © 2001 John Wiley & Sons, Inc. Random Struct. Alg., 18: 201–256 2001  相似文献   

17.
This paper is concerned with well‐posedness of the incompressible magneto‐hydrodynamics (MHD) system. In particular, we prove the existence of a global mild solution in BMO?1 for small data which is also unique in the space C([0, ∞); BMO?1). We also establish the existence of a local mild solution in bmo?1 for small data and its uniqueness in C([0, T); bmo?1). In establishing our results an important role is played by the continuity of the bilinear form which was proved previously by Kock and Tataru. In this paper, we give a new proof of this result by using the weighted Lp‐boundedness of the maximal function. Copyright © 2006 John Wiley & Sons, Ltd.  相似文献   

18.
This paper is devoted to the study of the Cauchy problem of incompressible magneto‐hydrodynamics system in the framework of Besov spaces. In the case of spatial dimension n?3, we establish the global well‐posedness of the Cauchy problem of an incompressible magneto‐hydrodynamics system for small data and the local one for large data in the Besov space ? (?n), 1?p<∞ and 1?r?∞. Meanwhile, we also prove the weak–strong uniqueness of solutions with data in ? (?n)∩L2(?n) for n/2p+2/r>1. In the case of n=2, we establish the global well‐posedness of solutions for large initial data in homogeneous Besov space ? (?2) for 2<p<∞ and 1?r<∞. Copyright © 2008 John Wiley & Sons, Ltd.  相似文献   

19.
In this paper, we consider the compressible bipolar Navier–Stokes–Poisson equations with a non‐flat doping profile in three‐dimensional space. The existence and uniqueness of the non‐constant stationary solutions are established when the doping profile is a small perturbation of a positive constant state. Then under the smallness assumption of the initial perturbation, we show the global existence of smooth solutions to the Cauchy problem near the stationary state. Finally, the convergence rates are obtained by combining the energy estimates for the nonlinear system and the L2‐decay estimates for the linearized equations. Copyright © 2017 John Wiley & Sons, Ltd.  相似文献   

20.
In the paper we prove the existence and uniqueness of solutions of the overdetermined elliptic system where b, ω are given functions, in a domain Ω C R3 with corners π/n, n = 2, 3, … The proof is divided on two steps, we construct a solution for the Laplace equation in a dihedral angle π/n, using the method of reflection and we get an estimate in the norms of the Sobolev spaces in some neighbourhood of the edge. In the dihedral angle system (A) reduces to the Dirichlet and Neumann problems for the Laplace equation. In the next step we prove the existence of solutions in the Sobolev spaces Wpl(Ω) using the existence of generalized solutions of (A).  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号