首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Multistimuli‐responsive hyperbranched poly(ether amine)s (hPEAs) were successfully synthesized through nucleophilic addition/ring‐opening reaction of commercial diglycidyl ether and amine via one‐pot synthesis. In aqueous solution, these hPEAs exhibited very sharp response to temperature, pH, and ionic strength, with well‐tunable cloud point (CP). Through changing the poly(ethylene oxide) (PEO) chain content of hPEAs, pH, and ionic strength, the CP could be adjustable from 35 to 100 °C, and increased with the increasing of PEO content, the decreasing of pH and ionic strength. The CP of hPEAs aqueous solution presents a linear relationship to the PEO content in pH range from 6.6 to 8.0. Dynamic light scattering (DLS) investigation indicated that these hPEAs dispersed in aqueous solution to form the stable nanomicelles, whose aggregation can be controlled by temperature, pH, and ionic strength. Moreover, the obtained hPEAs contain reactive amino groups in periphery and hydroxyl groups inside, which can be further functionalized. © 2010 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 48: 4252–4261, 2010  相似文献   

2.
A well‐defined starlike amphiphilic graft copolymer bearing hydrophilic poly(acrylic acid) backbones and hydrophobic polystyrene side chains was synthesized by successive atom transfer radical polymerization followed by the hydrolysis of poly‐(methoxymethyl acrylate) backbone. A grafting‐from strategy was employed for the synthesis of a graft copolymer with narrow molecular weight distribution. Hydrophobic polystyrene side chains were connected to the backbones through stable C? C bonds. The poly(methoxymethyl acrylate) backbones can be easily hydrolyzed with HCl without affecting the hydrophobic polystyrene side chains. This kind of amphiphilic graft copolymer can form stable sphere micelles in water. The sizes of the micelles were dependent on the ionic strength and pH value. © 2007 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 45: 3687–3697, 2007  相似文献   

3.
Two new amphiphilic star graft copolymers bearing hydrophobic poly(tert‐butyl acrylate) backbone and hydrophilic poly(ethylene oxide) (PEO) side chains with different molecular weights were synthesized by sequential reversible addition fragmentation chain transfer (RAFT) polymerization and single electron transfer‐nitroxide radical coupling (SET‐NRC) reaction under mild conditions. RAFT homopolymerization of tert‐butyl 2‐((2‐bromopropanoyloxy)methyl)acrylate was mediated by a four‐armed chain transfer agent in a controlled way to afford a well‐defined starlike backbone with a narrow molecular weight distribution (Mw/Mn = 1.26). The target poly(tert‐butyl acrylate)‐g‐PEO (PtBA‐g‐PEO) star graft copolymers were synthesized by SET‐NRC reaction between Br‐containing PtBA‐based starlike backbone and PEO end functionalized with 2,2,6,6‐tetramethylpiperidine‐1‐oxyl (TEMPO) group using copper/N,N,N′,N′,N″‐pentamethyldiethylenetriamine as catalytic system at ambient temperature via grafting‐onto strategy. The critical micelle concentration values of the obtained amphiphilic star graft copolymers in aqueous media and brine were determined by fluorescence probe technique using pyrene as probe. Diverse micellar morphologies were formed by varying the content of hydrophilic PEO segment as well as the initial concentration of stock solution. In addition, poly(acrylic acid)‐g‐PEO double hydrophilic star graft copolymers were obtained by selective acidic hydrolysis of hydrophobic PtBA starlike backbone without affecting PEO side chains. © 2010 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem, 2010  相似文献   

4.
A successive method for preparing novel amphiphilic graft copolymers with a hydrophilic backbone and hydrophobic side chains was developed. An anionic copolymerization of two bifunctional monomers, namely, allyl methacrylate (AMA) and a small amount of glycidyl methacrylate (GMA), was carried out in tetrahydrofuran (THF) with 1,1‐diphenylhexyllithium (DPHL) as the initiator in the presence of LiCl ([LiCl]/[DPHL]0 = 2), at −50 °C. The copolymer poly(AMA‐co‐GMA) thus obtained possessed a controlled molecular weight and a narrow molecular weight distribution (Mw /Mn = 1.08–1.17). Without termination and polymer separation, a coupling reaction between the epoxy groups of this copolymer and anionic living polystyrene [poly(St)] at −40 °C generated a graft copolymer with a poly(AMA‐co‐GMA) backbone and poly(St) side chains. This graft copolymer was free of its precursors, and its molecular weight as well as its composition could be well controlled. To the completed coupling reaction solution, a THF solution of 9‐borabicyclo[3.3.1]nonane was added, and this was followed by the addition of sodium hydroxide and hydrogen peroxide. This hydroboration changed the AMA units of the backbone to 3‐hydroxypropyl methacrylate, and an amphiphilic graft copolymer with a hydrophilic poly(3‐hydroxypropyl methacrylate) backbone and hydrophobic poly(St) side chains was obtained. © 2000 John Wiley & Sons, Inc. J Polym Sci A: Polym Chem 38: 1195–1202, 2000  相似文献   

5.
Reversible addition‐fragmentation chain transfer (RAFT) polymerization of a typical hydrophobic monomer of styrene within microreactor of shell‐corona hollow microspheres of poly(styrene‐co‐methacrylic acid) suspending in water is studied. The shell‐corona hollow microspheres contain a hydrophilic corona of poly(methacrylic acid) (PMAA) and a cross‐linked polystyrene shell, which can suspend in water because of the hydrophilic corona of PMAA. The size of the shell‐corona hollow microspheres is about 289 nm and the extent of the microcavity of the hollow microsphere is 154 nm. These shell‐corona hollow microspheres can act as microreactor, within which the typical hydrophobic monomer of styrene, the RAFT agent of S‐benzyl dithiobenzoate and the initiator of 2,2′‐azobisisobutyronitrile can be encapsulated and RAFT polymerization of styrene takes place in well controlled manner in water. It is found that the resultant polymer of polystyrene has a competitively low polydispersity index and its number‐average molecular weight linearly increases with monomer conversion. The method is believed to be a new strategy of RAFT polymerization of hydrophobic monomer in aqueous solution. © 2010 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem, 2010  相似文献   

6.
Sulfonated fluorinated multiblock copolymers based on high performance polymers were synthesized and evaluated for use as proton exchange membranes (PEMs). The multiblock copolymers consist of fully disulfonated poly(arylene ether sulfone) and partially fluorinated poly(arylene ether ketone) as hydrophilic and hydrophobic segments, respectively. Synthesis of the multiblock copolymers was achieved by a condensation coupling reaction between controlled molecular weight hydrophilic and hydrophobic oligomers. The coupling reaction could be conducted at relatively low temperatures (e.g., 105 °C) by utilizing highly reactive hexafluorobenzene (HFB) as a linkage group. The low coupling reaction temperature could prevent a possible trans‐etherification, which can randomize the hydrophilic‐hydrophobic sequences. Tough ductile membranes were prepared by solution casting and their membrane properties were evaluated. With similar ion exchange capacities (IECs), proton conductivity and water uptake were strongly influenced by the hydrophilic and hydrophobic block sequence lengths. Conductivity and water uptake increased with increasing block length by developing nanophase separated morphologies. Atomic force microscopy (AFM) and transmission electron microscopy (TEM) experiments revealed that the connectivity of the hydrophilic segments was enhanced by increasing the block length. The systematic synthesis and characterization of the copolymers are reported. © 2009 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 48: 214–222, 2010  相似文献   

7.
A series of well‐defined amphiphilic graft copolymers containing hydrophilic poly(acrylic acid) (PAA) backbone and hydrophobic poly(vinyl acetate) (PVAc) side chains were synthesized via sequential reversible addition‐fragmentation chain transfer (RAFT) polymerization followed by selective hydrolysis of poly(tert‐butyl acrylate) backbone. A new Br‐containing acrylate monomer, tert‐butyl 2‐((2‐bromopropanoyloxy)methyl) acrylate, was first prepared, which can be polymerized via RAFT in a controlled way to obtain a well‐defined homopolymer with narrow molecular weight distribution (Mw/Mn = 1.08). This homopolymer was transformed into xanthate‐functionalized macromolecular chain transfer agent by reacting with o‐ethyl xanthic acid potassium salt. Grafting‐from strategy was employed to synthesize PtBA‐g‐PVAc well‐defined graft copolymers with narrow molecular weight distributions (Mw/Mn < 1.40) via RAFT of vinyl acetate using macromolecular chain transfer agent. The final PAA‐g‐PVAc amphiphilic graft copolymers were obtained by selective acidic hydrolysis of PtBA backbone in acidic environment without affecting the side chains. The critical micelle concentrations in aqueous media were determined by fluorescence probe technique. The micelle morphologies were found to be spheres. © 2009 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 47: 6032–6043, 2009  相似文献   

8.
A new stratagem for the synthesis of amphiphilic graft copolymers of hydrophilic poly(ethylene oxide) as the main chain and hydrophobic polystyrene as the side chains is suggested. A poly(ethylene oxide) with pending 2,2,6,6‐tetramethylpiperidine‐1‐oxyls [poly(4‐glycidyloxy‐2,2,6,6‐tetramethylpiperidine‐1‐oxyl‐co‐ethylene oxide)] was first prepared by the anionic ring‐opening copolymerization of ethylene oxide and 4‐glycidyloxy‐2,2,6,6‐tetramethylpiperidine‐1‐oxyl, and then the graft copolymerization of styrene was completed with benzoyl peroxide as the initiator in the presence of poly(4‐glycidyloxy‐2,2,6,6‐tetramethylpiperidine‐1‐oxyl‐co‐ethylene oxide). The polymerization of styrene was under control, and comblike, amphiphilic poly(ethylene oxide)‐g‐polystyrene was obtained. The copolymer and its intermediates were characterized with size exclusion chromatography, 1H NMR, and electron spin resonance in detail. © 2006 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 44: 3836–3842, 2006  相似文献   

9.
A series of well‐defined amphiphilic graft copolymers, containing hydrophilic poly(acrylic acid) backbone and hydrophobic poly(butyl acrylate) side chains, were synthesized by sequential reversible addition fragmentation chain transfer (RAFT) polymerization and atom transfer radical polymerization (ATRP) without any postpolymerization functionality modification followed by selective acidic hydrolysis of poly(tert‐butyl acrylate) backbone. tert‐Butyl 2‐((2‐bromopropanoyloxy)methyl)‐acrylate was first homopolymerized or copolymerized with tert‐butyl acrylate by RAFT in a controlled way to give ATRP‐initiation‐group‐containing homopolymers and copolymers with narrow molecular weight distributions (Mw/Mn < 1.20) and their reactivity ratios were determined by Fineman‐Ross and Kelen‐Tudos methods, respectively. The density of ATRP initiation group can be regulated by the feed ratio of the comonomers. Next, ATRP of butyl acrylate was directly initiated by these macroinitiators to synthesize well‐defined poly(tert‐butyl acrylate)‐g‐poly(butyl acrylate) graft copolymers with controlled grafting densities via the grafting‐from strategy. PtBA‐based backbone was selectively hydrolyzed in acidic environment without affecting PBA side chains to provide poly(acrylic acid)‐g‐poly(butyl acrylate) amphiphilic graft copolymers. Fluorescence probe technique was used to determine the critical micelle concentrations in aqueous media and micellar morphologies are found to be spheres visualized by TEM. © 2010 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 48: 2622–2630, 2010  相似文献   

10.
A novel amphiphilic graft copolymer consisting of hydrophilic poly(acrylic acid) backbones and hydrophobic poly(butyl methacrylate) side chains was synthesized by successive atom transfer radical polymerization followed by hydrolysis of poly‐(methoxymethyl acrylate) backbone. A grafting‐from strategy was employed for the synthesis of graft copolymers with narrow molecular weight distributions (polydispersity index < 1.40). Hydrophobic side chains were connected to the backbone through stable C? C bonds instead of ester connections. Poly(methoxymethyl acrylate) backbone was easily hydrolyzed to poly(acrylic acid) backbone with HCl without affecting the hydrophobic side chains. The amphiphilic graft copolymer could form stable micelles in water. The critical micelle concentration in water was determined by a fluorescence probe technique. The morphology of the micelles was preliminarily explored with transmission electron microscopy and was found to be spheres. © 2006 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 44: 6857–6868, 2006  相似文献   

11.
A well‐defined double hydrophilic graft copolymer, with polyacrylate as backbone, hydrophilic poly(ethylene glycol) and poly(methacrylic acid) as side chains, was synthesized via successive atom transfer radical polymerization followed by the selective hydrolysis of poly(methoxymethyl methacrylate) side chains. The grafting‐through strategy was first used to prepare poly[poly(ethylene glycol) methyl ether acrylate] comb copolymer. The obtained comb copolymer was transformed into macroinitiator by reacting with lithium diisopropylamine and 2‐bromopropionyl chloride. Afterwards, grafting‐from route was employed for the synthesis of poly[poly(ethylene glycol) methyl ether acrylate]‐g‐poly(methoxymethyl methacrylate) amphiphilic graft copolymer. The molecular weight distribution of this amphiphilic graft copolymer was narrow. Poly(methoxymethyl methacrylate) side chains were connected to polyacrylate backbone through stable C? C bonds instead of ester connections. The final product, poly[poly(ethylene glycol) methyl ether acrylate]‐g‐poly(methacrylate acid), was obtained by selective hydrolysis of poly(methoxymethyl methacrylate) side chains under mild conditions without affecting the polyacrylate backbone. This double hydrophilic graft copolymer was found be stimuli‐responsive to pH and ionic strength. © 2008 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 46: 4056–4069, 2008  相似文献   

12.
A method of one‐stage soap‐free emulsion polymerization to synthesize narrowly dispersed core‐shell microspheres is proposed. Following this method, core‐shell microspheres of poly(styrene‐co‐4‐vinylpyridine), poly(styrene‐co‐methyl acrylic acid), and poly[styrene‐co‐2‐(acetoacetoxy)ethyl methacrylate‐co‐methyl acrylic acid] are synthesized by one‐stage soap‐free emulsion polymerization of a mixture of one or two hydrophobic monomers and a suitable hydrophilic monomer in water. The effect of the molar ratio of the hydrophobic monomer to the hydrophilic one on the size, the core thickness, and the shell thickness of the core‐shell microspheres is discussed. The molar ratio of the hydrophobic and hydrophilic monomers and the hydrophilicity of the resultant oligomers of the hydrophilic monomer are optimized to synthesize narrowly dispersed core‐shell microspheres. A possible mechanism of one‐stage soap‐free emulsion polymerization to synthesize core‐shell microspheres is suggested and coagglutination of the oligomers of the hydrophilic monomers on the hydrophobic core is considered to be the key to form core‐shell microspheres. © 2008 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 46: 1192–1202, 2008  相似文献   

13.
A series of well‐defined amphiphilic graft copolymers bearing hydrophobic poly(tert‐butyl acrylate) backbone and hydrophilic poly[poly(ethylene glycol) methyl ether methacrylate)] (PPEGMEMA) side chains were synthesized by sequential reversible addition fragmentation chain transfer (RAFT) polymerization and single‐electron‐transfer living radical polymerization (SET‐LRP) without any polymeric functional group transformation. A new Br‐containing acrylate monomer, tert‐butyl 2‐((2‐bromoisobutanoyloxy)methyl)acrylate (tBBIBMA), was first prepared, which can be homopolymerized by RAFT to give a well‐defined PtBBIBMA homopolymer with a narrow molecular weight distribution (Mw/Mn = 1.15). This homopolymer with pendant Br initiation group in every repeating unit initiated SET‐LRP of PEGMEMA at 45 °C using CuBr/dHbpy as catalytic system to afford well‐defined PtBBIBMA‐g‐PPEGMEMA graft copolymers via the grafting‐from strategy. The self‐assembly behavior of the obtained graft copolymers in aqueous media was investigated by fluorescence spectroscopy and TEM. These copolymers were found to be stimuli‐responsive to both temperature and ions. Finally, poly(acrylic acid)‐g‐PPEGMEMA double hydrophilic graft copolymers were obtained by selective acidic hydrolysis of hydrophobic PtBA backbone while PPEGMEMA side chains kept inert. © 2011 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem, 2011  相似文献   

14.
The design and synthesis of novel linear–dendritic diblock amphiphiles with linear poly(acrylic acid) (PAA) as the hydrophilic block and dendritic poly(benzyl ether) as the hydrophobic block are described. The synthetic process consisted of two steps: a poly(methyl acrylate) (PMA)–poly(benzyl ether) dendrimer series were synthesized with atom transfer radical polymerization, and through the hydrolysis of linear PMA block into PAA, amphiphilic block copolymers, the PAA–poly(benzyl ether) dendrimer series, were obtained. The copolymers were characterized by 1H NMR, Fourier transform infrared, and size exclusion chromatography and exhibited well‐defined architectures and low polydispersities. When the generation number of the dendritic block (Gi) less or equal to 3 and the degree of polymerization of the linear chain (n) was greater than 10, the amphiphiles were water‐soluble. The solution intrinsic viscosity increased with both the length of linear chain and the generation number of the dendritic block. The results obtained demonstrate that dendritic blocks play an unusual role in aqueous solutions of amphiphiles. © 2000 John Wiley & Sons, Inc. J Polym Sci A: Polym Chem 38: 4282–4288, 2000  相似文献   

15.
Dimethyl 2,6‐anthracene dicarboxylate is used as a comonomer in the synthesis of functional copolymers that are subject to modification with Diels–Alder reactions. The formation of poly(ethylene terephthalate‐co‐2,6‐anthracenate), containing less than 20 mol % of the anthracene‐2,6‐dicarboxylate structural units, provides materials that are tractable and soluble. The anthracene units of the copolymers undergo Diels–Alder reactions with N‐substituted maleimides. The grafting of N‐alkylmaleimides affords soluble, hydrophobic polymers, whereas grafting with maleimide‐terminated poly(ethylene glycol) affords hydrophilic polymers. Because this reaction proceeds below the melting point of the copolymers, the procedure can be applied to thin films, whereby the surface properties are modified. © 2002 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 40: 3256–3263, 2002  相似文献   

16.
Poly(N‐isopropylacrylamide) (PNIPAAm) homopolymers synthesized by reversible addition–fragmentation chain transfer polymerization were used as macro‐chain‐transfer agents to synthesize smart amphiphilic block copolymers with a switchable hydrophilic–hydrophobic block of PNIPAAm and a hydrophilic block of poly(N‐dimethylacrylamide). All polymers were characterized by gel permeation chromatography, 1H NMR, and differential scanning calorimetry. The reversible micelles formed by the block copolymers of various compositions in aqueous solutions were characterized by 1H NMR, dynamic light scattering, and tensiometry. Micelles were observed in the aqueous solutions when the temperature was increased to 40 °C because of the collapse of the PNIPAAm structure, which led to a PNIPAAm hydrophobic block. The drug loading capacity was illustrated with the use of the solvatochromic Reichardt's dye and measured by ultraviolet–visible. © 2005 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 43: 3643–3654, 2005  相似文献   

17.
18.
A series of novel “jellyfish‐like” graft copolymers with chitooligosaccharide (COS) as shorter backbone and poly(ε‐caprolactone) as longer branches were synthesized using ring‐opening polymerization of ε‐caprolactone via a protection‐polymerization‐deprotection procedure with trimethylsilylchitooligosaccharide as intermediate and triethylaluminum as catalyst precursor. The obtained chitooligosaccharide‐graft‐poly(ε‐caprolactone) polymers possess amphiphilic structure with hydrophilic COS backbone and hydrophobic polycaprolactone branches. Because of this unique “jellyfish‐like” structure, these graft copolymers could self‐assemble to form various morphologies of aggregates in a mixture solution of water and tetrahydrofuran. The transmission electron microscopy studies revealed that the formed aggregates exhibited necklace‐like, flower‐like onion vesicle, and tubular morphologies. It is found that the hydrogen‐bonding formed by the hydroxyl and amino groups remained on the COS backbone played an important role during the aggregation of these graft copolymers, and their morphologies were changed with the varying length of poly (ε‐caprolactone) branches, the concentration of the graft copolymer, and the self‐assembly process. © 2008 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 46: 4889–4904, 2008  相似文献   

19.
Amphiphilic double‐brush copolymers (DBCs) with each graft site quantitatively carrying both a hydrophilic poly(ethylene oxide) (PEO) graft and a hydrophobic polystyrene (PSt) graft are synthesized by sequential reversible addition‐fragmentation chain transfer (RAFT) polymerization and ring‐opening metathesis polymerization (ROMP). These DBCs are used as both surfactants and polyfunctional RAFT agents in the radical polymerization of St in aqueous dispersed media. Miniemulsions with narrowly dispersed St‐based nanodroplets are readily obtained after ultrasonication of the reaction mixtures. Without the presence of crosslinker, chain‐extension polymerization of St from the DBCs yields well‐defined polymeric latexes with narrow size distributions. However, with the presence of divinylbenzene (DVB) as the crosslinker, vesicular polymeric nanoparticles are formed as the major product. Such crosslinking‐induced change in morphology of the resulting latex nanomaterials may be ascribed to the increase of interfacial curvature in the heterophase systems during crosslinking polymerization. © 2014 Wiley Periodicals, Inc. J. Polym. Sci., Part A: Polym. Chem. 2014 , 52, 3250–3259  相似文献   

20.
Living radical polymerization of 2‐methoxyethyl acrylate (MEA) was achieved by single‐electron‐transfer/degenerative transfer mediated living radical polymerization (SET‐DTLRP) in water catalyzed by sodium dithionate. The poly(2‐methoxyethyl acrylate) is an amphiphilic polymer with a hydrophobic part (polyethylene chain) and a mildly hydrophilic tail. The plots of number‐average molecular weight versus conversion and ln{[M]0/[M]} versus time are linear, indicating a controlled polymerization. This method leads to the preparation of α,ω‐di(iodo) poly(2‐methoxyethyl acrylate)s (α,ω‐di(iodo)PMEA) macroinitiators that can be further functionalized. The molecular weight distributions were determined using a combination of three detectors (TriSEC): right‐angle light scattering (RALLS), a differential viscometer (DV) and refractive index (RI). The method studied in this work represents a possible route to prepare well‐tailored macromolecules made of 2‐methoxyethyl acrylate (biocompatible material) in an environmentally friendly reaction medium. To the best of our knowledge there is no previous report dealing with the synthesis of PMEA by any LRP approach in aqueous medium. © 2009 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 47: 4454–4463, 2009  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号