首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Magnetic core–shell titanium dioxide nanoparticles (Fe3O4@SiO2@TiO2) were applied for the efficient preparation of 1,2,4,5‐tetrasubstituted imidazole derivatives by the one‐pot multi‐component condensation of benzil with aldehydes, primary amines and ammonium acetate under solvent‐free conditions. The catalyst was synthesized and studied using several techniques including X‐ray diffraction, transmission electron microscopy, field‐emission scanning electron microscopy and energy‐dispersive X‐ray spectroscopy. Copyright © 2016 John Wiley & Sons, Ltd.  相似文献   

2.
A core–shell fluorine‐containing polyacrylate emulsion was successfully prepared by UV‐initiated seeded emulsion polymerization in two stages in the presence of two photoinitiators. The water‐soluble photoinitiator for the core polymerization and the oil‐soluble photoinitiator was used for the shell polymerization. Both of the two stage polymerizations could be completed within 15 min and displayed a conversion above 94%. The emulsion and the films were characterized by Fourier transformed infrared spectrometry, transmission electron microscopy, dynamic light scattering, X‐ray photoelectron spectroscopy (XPS), contact angle (CA), and thermogravimetry analysis, respectively. The analysis results indicated that the fluorine‐containing latex particles had very small particle size (40 nm) with a core–shell structure and a narrow particle size distribution. XPS analysis revealed that a gradient concentration of fluorine excited in fluorine‐containing emulsion film from the film–air interface to the film–glass interface. In addition, the film formed from the fluorine‐containing emulsion exhibited not only higher thermal stability but also better hydrophobicity than that of the fluorine‐free emulsion. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   

3.
Multi‐walled carbon nanotubes (MWNTs) were covalently and non‐covalently functionalized with tetra‐(4‐hydroxylphenyl) porphyrin (THPPH2) and its complexes (ZnTHPP) forming dispersible nanohybrids in organic solution. The morphology of the nanohybrids was observed with transmission electron microscopy. The structure of the product was characterized by FT‐IR, UV‐Vis spectrophotometer, fluorescence spectroscopy and thermogravimetric analysis. The photo‐induced electron‐transfer process of the nanohybrids in organic solution was also revealed.  相似文献   

4.
A mesogen‐jacketed liquid crystalline polymer (MJLCP) containing triphenylene (Tp) moieties in the side chains with 12 methylene units as spacers (denoted as PP12V) was synthesized. Its liquid crystalline (LC) phase behavior was studied with a combination of solution 1H NMR, solid‐state NMR, gel permeation chromatography, thermogravimetric analysis, polarized light microscopy, differential scanning calorimetry, and one‐ and two‐dimensional wide‐angle X‐ray diffraction. By simply varying the temperature, two ordered nanostructures at sub‐10‐nm length scales originating from two LC building blocks were obtained in one polymer. The low‐temperature phase of the polymer is a hexagonal columnar phase (ΦH, a = 2.06 nm) self‐organized by Tp discotic mesogens. The high‐temperature phase is a nematic columnar phase with a larger dimension (a′ = 4.07 nm) developed by the rod‐like supramolecular mesogen—the MJLCP chain as a whole. A re‐entrant isotropic phase is found in the medium temperature range. Partially homeotropic alignment of the polymer can be achieved when treated with an electric field, with the polymer in the ΦH phase developed by the Tp moieties. The incorporation of Tp moieties through relatively long spacers (12 methylene units) disrupts the ordered packing of the MJLCP at low temperatures, which is the first case for main‐chain/side‐chain combined LC polymers with MJLCPs as the main‐chain LC building block to the best of our knowledge. The relationship of the molecular structure and the novel phase behavior of PP12V has implications in the design of LC polymers containing nanobuilding blocks toward constructing ordered nanostructures at different length scales. © 2013 Wiley Periodicals, Inc. J. Polym. Sci., Part A: Polym. Chem. 2014 , 52, 295–304  相似文献   

5.
The synthesis and characterization of a series of nematic SWNT‐polyazomethine composites are described. The composites were prepared by in situ polymerization in the presence of 1 wt % of chemically modified SWNTs in such a way that they were either dispersed or covalently bonded to the polymeric matrix. The presence of the SWNTs did not alter the thermal behavior of the polymer matrix and, therefore, highly oriented fibers could be melt‐extruded from the composites at moderate temperatures, as revealed by structural and morphological studies. Preliminary tests on tensile properties indicate that strength and stiffness were improved when compared with fibers without CNTs, particularly when SWNTs were covalently bonded to the polymeric matrix. © 2009 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 47: 2361–2372, 2009  相似文献   

6.
This study describes the preparation of a nanocomposites fabricated from monodispersed 4‐nm iron oxide (Fe3O4) coated on the surface of carboxylic acid containing multi‐walled carbon nanotube (c‐MWCNT) and polypyrrole (PPy) by in situ chemical oxidative polymerization. High‐resolution transmission electron microscopy images and X‐ray diffraction (XRD) data indicate that the resulting Fe3O4 nanoparticles synthesized using the thermal decomposition are close to spherical dots with a particle size about 4 ± 0.2 nm. The resulting nanoparticles were further mixed with c‐MWCNT in an aqueous solution containing with anionic surfactant sodium bis(2‐ethylhexyl) sulfosuccinate to form one‐dimensional Fe3O4 coated c‐MWCNT template for further preparation of nanocomposite. Structural and morphological analysis using field‐emission scanning electron microscopy, high‐resolution transmission electron microscopy, and XRD showed that the fabricated Fe3O4 coated c‐MWCNT/PPy nanocomposites are one‐dimensional core (Fe3O4 coated c‐MWCNT)‐shell (PPy) structures. The conductivities of these Fe3O4 coated c‐MWCNT/PPy nanocomposites are about four times higher than those of pure PPy matrix. © 2008 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 46: 727–733, 2008  相似文献   

7.
Nylon‐6/glass‐fiber (GF)/liquid‐crystalline‐polymer (LCP) ternary blends with different viscosity ratios were prepared with three kinds of nylon‐6 with different viscosities as matrices. The rheological behaviors of these blends were characterized with capillary rheometry. The morphology was observed with scanning electron microscopy and polarizing optical microscopy. This study showed that although LCP did not fibrillate in binary nylon‐6/LCP blends, LCP fibrillated to a large aspect ratio in some ternary blends after GF was added. The addition of 5 wt % LCP significantly reduced the melt viscosity of nylon‐6/GF blends to such an extent that some nylon‐6/GF/LCP blends had quite low viscosities, not only lower than those of neat resins and nylon‐6/GF blends but also lower than those of corresponding nylon‐6/LCP blends. The mutual influence of the morphology and rheological properties was examined. The great reduction of the melt viscosity was considered the result of LCP fibrillation. © 2004 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 42: 1619–1627, 2004  相似文献   

8.
Surface‐confined atom transfer radical polymerization was used to prepare gold nanoparticle–poly(methyl methacrylate) core–shell particles at elevated temperature. First, gold nanoparticles were prepared by the one‐pot borohydride reduction of tetrachloroaurate in the presence of 11‐mercapto‐1‐undecanol (MUD). MUD‐capped gold nanoparticles were then exchanged with 3‐mercaptopropyltrimethoxysilane (MPS) to prepare a self‐assembled monolayer (SAM) of MPS on the gold nanoparticle surfaces and subsequently hydrolyzed with hydrochloric acid. The extent of exchange of MUD with MPS was determined by NMR. The resulting crosslinked silica‐primer layer stabilized the SAM of MPS and was allowed to react with the initiator [(chloromethyl)phenylethyl] trimethoxysilane. Atom transfer radical polymerization was conducted on the Cl‐terminated gold nanoparticles with the CuCl/2,2′‐bipyridyl catalyst system at elevated temperature. The rates of polymerization with the initiator‐modified gold nanoparticles exhibited first‐order kinetics with respect to the monomer, and the number‐average molecular weight of the cleaved graft polymer increased linearly with the monomer conversion. The presence of the polymer on the gold nanoparticle surface was identified by Fourier transform infrared spectroscopy and transmission electron microscopy. © 2005 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 43: 3631–3642, 2005  相似文献   

9.
The functionalization of multi‐walled carbon nanotubes (MWNTs) was achieved by grafting furfuryl amine (FA) onto the surfaces of MWNTs. Furthermore, the functional MWNTs were incorporated into carbon fabric composites and the tribological properties of the resulting composites were investigated systematically on a model ring‐on‐block test rig. Friction and wear tests revealed that the modified MWNTs filled carbon fabric composite has the highest wear resistance under all different sliding conditions. Fourier transform infrared spectroscopy (FTIR), X‐ray photoelectron spectroscopy (XPS), and thermal gravimetric analysis (TGA) revealed that MWNTs were successfully functionalized and the modification led to an improvement in the dispersion of MWNTs, which played an important role on the enhanced tribological properties of carbon fabric composites. It can also be found that the friction and wear behavior of MWNTs filled carbon fabric composites are closely related with the sliding conditions such as sliding speed, load, and lubrication conditions. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   

10.
Multiwalled carbon nanotubes (MWCNTs) can endow high dielectric constant to polymer‐based composites. However, the accompanying poor dispersion of MWCNTs and high dielectric loss for composites severely limit their application in dielectric field. Herein, a modified acid‐treated MWCNTs encapsulated by the polyaniline/poly(sodium 4‐styrenesulfonate) layers (aMWCNTs@PANI‐PSS) with a one core‐two shell structure was fabricated by in situ polymerization followed by electrostatic self‐assembly technique. Furthermore, the composite films based on aMWCNTs@PANI‐PSS/poly(vinylidenefluoride‐hexaflouropropylene) (PVDF‐HFP) were fabricated by a solution‐casting method. An ultrathin insulating PSS shell is wrapped onto aMWCNTs@PANI, resulting in the improvement of dispersibility for aMWCNTs@PANI and the decrease of dielectric loss for composite films. When the content of aMWCNTs@PANI‐PSS is 5.0 wt %, the dielectric constant of aMWCNTs@PANI‐PSS/PVDF‐HFP reaches 430 (100 Hz), which is about 55 times of pure PVDF‐HFP and 1.7 times of aMWCNTs@PANI/PVDF‐HFP (247). Besides, the responding dielectric loss of aMWCNTs@PANI‐PSS/PVDF‐HFP composite film is only 0.67, much lower than that of aMWCNTs@PANI/PVDF‐HFP (25) and aMWCNTs/PVDF‐HFP (3185). © 2017 Wiley Periodicals, Inc. J. Polym. Sci., Part B: Polym. Phys. 2017 , 55, 948–956  相似文献   

11.
A novel combined main‐chain/side‐chain liquid crystalline polymer based on mesogen‐jacketed liquid crystal polymers (MJLCPs) containing two biphenyls per mesogenic core of MJLCPs main chain, poly(2,5‐bis{[6‐(4‐butoxy‐4′‐oxy‐biphenyl)hexyl]oxycarbonyl}styrene) (P1–P8) was successfully synthesized via atom transfer radical polymerization (ATRP). The chemical structure of the monomer was confirmed by elemental analysis, 1H NMR, and 13C NMR. The molecular characterizations of the polymer with different molecular weights (P1–P8) were performed with 1H NMR, gel permeation chromatography (GPC), and thermogravimetric analysis (TGA). Their phase transitions and liquid‐crystalline behaviors of the polymers were investigated by differential scanning calorimetry (DSC) and polarized optical microscope (POM). We found that the polymers P1–P8 exhibited similar behavior with three different liquid crystalline phases upon heating to or cooling in addition to isotropic state, which should be related to the complex liquid crystal property of the side‐chain and the main‐chain. Moreover, the transition temperatures of liquid crystalline phases of P1–P8 are found to be dependent on the molecular weight. © 2008 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 46: 7310–7320, 2008  相似文献   

12.
Ternary blend fibers (TBFs), based on melt blends of poly(ethylene 2,6‐naphthalate), poly(ethylene terephthalate), and a thermotropic liquid‐crystal polymer (TLCP), were prepared by a process of melt blending and spinning to achieve high‐performance fibers. The reinforcement effect of the polymer matrix by the TLCP component, the fibrillar structure with TLCP fibrils of high aspect ratios, and the development of more ordered and perfect crystalline structures by an annealing process resulted in the improvement of the tensile strength and modulus for the TBFs. An increase in the apparent crystallite size with the spinning speed was attributed to the development of larger crystallites and more ordered crystalline structures in the annealed TBFs. The birefringence and density of the TBFs increased with increasing spinning speed, the TBFs becoming more oriented and the crystal packing becoming more enhanced. The molecular orientation was an important factor in determining the tensile strength and modulus of the TBFs. © 2003 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 42: 395–403, 2004  相似文献   

13.
Single‐walled carbon nanotubes (SWCNTs) have been functionalized with poly(γ‐benzyl‐L ‐glutamate) (PBLG) by ring‐opening polymerizations of γ‐benzyl‐L ‐glutamic acid‐based N‐carboxylanhydrides (NCA‐BLG) using amino‐functionalized SWCNTs (SWCNT‐NH2) as initiators. The SWCNT functionalization has been verified by FTIR spectroscopy and transmission electron microscopy. The FTIR study reveals that surface‐attached PBLGs adopt random‐coil conformations in contrast to the physically absorbed or bulk PBLGs, which exhibit α‐helical conformations. Raman spectroscopic analysis reveals a significant alteration of the electronic structure of SWCNTs as a result of PBLG functionalization. The PBLG‐functionalized SWCNTs (SWCNT‐PBLG) exhibit enhanced solubility in DMF. Stable DMF solutions of SWCNT‐PBLG/PBLG with a maximum SWCNTs concentration of 259 mg L?1 can be readily obtained. SWCNT‐PBLG/PBLG solid composites have been characterized by differential scanning calorimetry, thermogravimetric analysis, wide/small‐angle X‐ray scattering (W/SAXS), scanning electron microscopy, and polarized optical microscopy for their thermal or morphological properties. Microfibers containing SWCNT‐PBLG and PBLG can also be prepared via electrospinning. WAXS characterization reveals that SWCNTs are evenly distributed among PBLG rods in solution and in the solid state where PBLGs form a short‐range nematic phase interspersed with amorphous domains. © 2010 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 48: 2340–2350, 2010  相似文献   

14.
《先进技术聚合物》2018,29(1):337-346
A biology‐inspired approach was utilized to functionalize hexagonal boron nitride (h‐BN), to enhance the interfacial interactions in acrylonitrile‐butadiene‐styrene copolymer/boron nitride (ABS/BN) composites. The poly (dopamine), poly (DOPA) layer, was formed on the surface of BN platelets via spontaneously oxidative self‐polymerization of DOPA in aqueous solution. The modified BN (named as mBN) coated with poly (DOPA) was mixed with ABS resin by melting. The strong interfacial interactions via π‐π stacking plus Van der Waals, both derived from by poly (DOPA), significantly promoted not only the homogeneous dispersion of h‐BN in the matrix, but also the effective interfacial stress transfer, leading to improve the impact strength of ABS/mBN even at slight mBN loadings. A high thermal conductivity of 0.501 W/(m·K) was obtained at 20 wt% mBN content, reaching 2.63 times of the value for pure ABS (0.176 W/(m·K)). Meanwhile, the ABS/mBN composites also exhibited an excellent electrical insulation property, which can be expected to be applied in the fields of thermal management and electrical enclosure.  相似文献   

15.
The peculiar thermal behavior of four PTFE/PMMA (Polymethylmethacrylate) core–shell nanoparticle samples, marked DV2M1, DV2M2, DV2M4, and DV2M6, was studied by combined differential scanning calorimetry and thermogravimetric analysis. The melting process of the PTFE in the various samples, subjected to annealing and thermal treatments, does not change. In contrast, a complex fractionated crystallization‐type behavior for the PTFE component was observed. The nanocomposite produced by the PMMA shell fluidification features a perfect dispersion of the nanometric PTFE cores. In these conditions, only one crystallization exotherm at very high undercooling is observed, possibly deriving from the homogeneous nucleation mechanism. In contrast, when high temperature thermal treatments cause the decomposition with partial loss of the PMMA shell and allows some cores to get in contact and merge, a crystallization process structured into several components is observed. This behavior indicates that different nucleation mechanisms are active, possibly involving the participation of distinct types of active nuclei with distinct crystallization efficiencies. Finally, when the PMMA shell amount is substantially reduced by the thermal degradation, only the expected crystallization process at moderate undercooling (310 °C) is observed, corresponding to the bulk crystallization induced by the most efficient heterogeneous nuclei. © 2010 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 48: 548–554, 2010  相似文献   

16.
17.
A hybrid composite consisting of rubber‐toughened nylon‐6,6, short glass fibers, and a thermotropic liquid‐crystalline polymers (LCP) was investigated by the LCP content being varied. The thermal behavior, morphology, and crystallization behavior due to hybridization were studied by differential scanning calorimetry (DSC), dynamic mechanical analysis (DMA), scanning electron microscopy (SEM), Fourier transform infrared (FTIR) spectroscopy, and wide‐angle X‐ray scattering (WAXS). DSC results indicated that the crystallinity of the glass‐fiber‐reinforced toughened nylon‐6,6 was reduced by LCP addition, particularly 5–10 wt % LCP. DMA data showed that the miscibility between the blended components was maximum at the 5 wt % LCP composition, and the miscibility decreased with increasing LCP content. SEM photomicrographs revealed information consistent with the thermal behavior on miscibility. It was also observed that the 10 wt % LCP composition showed predominantly an amorphous character with FTIR and WAXS. WAXS results indicated that LCP hybridization increased the interplanar spacing of the hydrogen‐bonded sheets of the nylon crystals rather than the spacing between the hydrogen‐bonded chains. © 2003 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 41: 549–559, 2003  相似文献   

18.
This communication describes the morphology and DC conductivity of poly(N‐vinylcarbazole) (PNVC)/multi‐walled carbon nanotubes (MWCNTs) nanocomposite. The nanocomposite has been synthesized by solid state in situ polymerization of N‐vinylcarbazole (NVC) monomer in the presence of MWCNTs at an elevated temperature. Fourier transform infrared (FT‐IR) spectroscopy studies reveal the ability of MWCNTs to promote the in situ polymerization of the NVC monomer. Field‐emission scanning electron microscopy (FE‐SEM) observations show the homogeneous wrapping of MWCNTs' outer surface by PNVC polymer. Transmission electron microscopy (TEM) images and Raman spectroscopy results support the SEM observations. Thermogravimetric analyses reveal a significant improvement of thermal stability of the nanocomposite sample in the higher temperature region. The resulting nanocomposite material exhibits a dramatic improvement of the DC conductivity inherent to the PNVC. For example, the DC conductivity increases from ≈5.9 × 10−13 S · cm−1 for PNVC to ≈12 S · cm−1 for the nanocomposite, an increase of about 1013 in the electrical conductivity.

  相似文献   


19.
Polycarbonate (PC) was melt blended with small amount of liquid‐crystalline polymer (LCP) and various contents of glass beads (GB) having different diameters. The rheological measurements indicated that the GB addition increased the viscosity ratio and seemed unfavorable to the LCP fibrillation. However, the morphological observation showed that the LCP fibrillation was promoted by the GB addition and varied with the GB packing. With the increased GB packing by increasing the GB content and/or decreasing the GB diameter, LCP deformed from spheres and ellipsoids into stretched ellipsoids at lower shear rates and into long fibrils at higher shear rates. Although higher content of smaller GB jammed into the larger LCP droplets and inhibited the LCP fibrillation, very long LCP fibrils formed at higher shear rates at a high enough packing of GB. The relationship between GB packing and LCP fibrillation revealed two kinds of hydrodynamic effects of GB promoting the LCP fibrillation: at lower GB packing, the shear flow was enhanced by the high local shear between GB, in quantity; and for a high enough GB packing, the shear flow was changed, in quality, into elongational flow, which was more effective for the LCP fibrillation. © 2006 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 44: 1020–1030, 2006  相似文献   

20.
A multifunctional nanomaterial (Fe3O4@SiO2@CX@NH2) comprising a magnetic core, a silicon protective interlayer, and an amphiphilic silica shell is successfully prepared. Ru nanoparticles catalyst loaded on Fe3O4@SiO2@CX@NH2 is used in hydrogenation of α‐pinene for the first time. The novel nanomaterial with amphipathy can be used as a solid foaming agent to increase gas–liquid–solid three‐phase contact and accelerate the reaction. Under the mild conditions (40 °C, 1 MPa H2, 3 h), 99.9% α‐pinene conversion and 98.9% cis‐pinane selectivity are obtained, which is by far the best results reported. Furthermore, the magnetic nanocomposite catalyst can be easily separated by an external magnet and reused nine times with high selectivity maintaining.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号