首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
In a recent paper published by Mitchell et al. in this journal, some results obtained in supercritical fluid chromatography and interpreted with the solvation parameter model to characterize interactions for “novel stationary phases” were surprising to us. Indeed, we had already published results for most of the stationary phases reported, but, except for polar phases, our results were not in agreement with those, despite the use of identical mobile phases in both studies. These data were disturbing because they suggest that supercritical fluid chromatography is always a normal‐phase mode, while we have shown that it is a reversed‐phase mode when working with non‐polar stationary phases. In the process of establishing the reason for the differences between our works, we examined several different factors. This paper deals with practice of linear solvation energy relationships: choice of dead‐volume marker, choice of test‐solutes to adequately probe the possible interactions and appropriate column length for characterization of chromatographic systems with highly eluting mobile phases are discussed. The importance of control experiments to validate retention models and confirm their accordance with the chromatographer's experience is evidenced. Recommendations for good linear solvation energy relationship practice are suggested in order to avoid the publication of results leading to erroneous conclusions.  相似文献   

2.
A relatively new stationary phase containing a polar group embedded in a hydrophobic backbone (i.e., ACE ® C18‐amide) was evaluated for use in supercritical fluid chromatography. The amide‐based column was compared with columns packed with bare silica, C18 silica, and a terminal‐amide silica phase. The system was held at supercritical pressure and temperature with a mobile phase composition of CO2 and methanol as cosolvent. The linear solvation energy relationship model was used to evaluate the behavior of these stationary phases, relating the retention factor of selected probes to specific chromatographic interactions. A five‐component test mixture, consisting of a group of drug‐like molecules was separated isocratically. The results show that the C18‐amide stationary phase provided a combination of interactions contributing to the retention of the probe compounds. The hydrophobic interactions are favorable; however, the electron donating ability of the embedded amide group shows a large positive interaction. Under the chromatographic conditions used, the C18‐amide column was able to provide baseline resolution of all the drug‐like probe compounds in a text mixture, while the other columns tested did not.  相似文献   

3.
A comparison is made between dichlorosilanes and cyclic siloxanes as starting materials in the synthesis of stationary phases for capillary gas chromatography (CGC) and supercritical fluid chromatography (SFC). Siloxanes containing one or more of the side groups methyl, vinyl, phenyl, and cyanoethyl in various ratios were synthesized and compared. These phases were characterized by chromatographic (gel permeation, GPC), spectroscopic (IR, 1H NMR, 29Si NMR), and thermal (DSC) methods. Coated fused silica columns were evaluated with respect to polarity, crosslinkability with several free-radical initiators, and thermal stability. A new liquid phase, 7% cyanoethyl, 7% phenyl, 1% vinyl methyl polysiloxane is shown to be more polar than OV-1701, more temperature stable, easily crosslinked and suitable for use in supercritical fluid chromatography.  相似文献   

4.
In order to obtain a selection of optimal chromatographic columns for the separation of chlorotriazine pesticides in packed column supercritical fluid chromatography (pSFC), a multi-criteria approach is applied. For this purpose, prediction of the separations is carried out, based on quantitative structure–retention relationships, then Derringer's desirability function is proposed to determine the stationary phase that will result in the most desirable separation. The best SFC separation obtained was then optimized using a mobile phase gradient. Besides, the accuracy of the solvation parameter model as SFC retention predictive model is assessed.  相似文献   

5.
6.
The coating properties of a novel water stationary phase used in capillary supercritical fluid chromatography were investigated. The findings confirm that increasing the length or internal diameter of the type 316 stainless‐steel column used provides a linear increase in the volume of stationary phase present. Under normal operating conditions, results indicate that about 4.9 ± 0.5 μL/m of water phase is deposited uniformly inside of a typical 250 μm internal diameter 316 stainless‐steel column, which translates to an area coverage of about 6.3 ± 0.5 nL/mm2 regardless of dimension. Efforts to increase the stationary phase volume present showed that etching the stainless‐steel capillary wall using hydrofluoric acid was very effective for this. For instance, after five etching cycles, this volume doubled inside of both the type 304 and the type 316 stainless‐steel columns examined. This in turn doubled analyte retention, while maintaining good peak shape and column efficiency. Overall, 316 stainless‐steel columns were more resistant to etching than 304 stainless‐steel columns. Results indicate that this approach could be useful to employ as a means of controlling the volume of water stationary phase that can be established inside of the stainless‐steel columns used with this supercritical fluid chromatography technique.  相似文献   

7.
Summary Linear solvation energy relationships (LSERs) are used to probe the changes in mobile and stationary phase properties of a carbon dioxide-based mobile phase and a polymeric stationary phase under near-critical conditions. Four mobile phase modifiers are compared with respect to dipolarity/polarizability, hydrogen bond donating and accepting ability, and other intermolecular interactions as a function of temperature. As temperature nears the mixture critical point, the differences in these properties between the mobile and stationary phases change to reflect the growing heterogeneity in mobile phase component distribution at the chromatographic interface. The stationary phase loses many of its original characteristics and takes on characteristics typical of the mobile phase modifier due to preferential adsorption of the modifier at the surface of the stationary phase.  相似文献   

8.
This article provides a summary of the development of ionic liquids as stationary phases for gas chromatography beginning with early work on packed columns that established details of the retention mechanism and established working methods to characterize selectivity differences compared with molecular stationary phases through the modern development of multi-centered cation and cross-linked ionic liquids for high-temperature applications in capillary gas chromatography. Since there are many reviews on ionic liquids dealing with all aspects of their chemical and physical properties, the emphasis in this article is placed on the role of gas chromatography played in the design of ionic liquids of low melting point, high thermal stability, high viscosity, and variable selectivity for separations. Ionic liquids provide unprecedented opportunities for extending the selectivity range and temperature-operating range of columns for gas chromatography, an area of separation science that has otherwise been almost stagnant for over a decade.  相似文献   

9.
Fused-silica capillary columns with internal diameters of 50 μm were coated with 0.25 to 1.0 μm films of SE-54 and evaluated under supercritical fluid chromatographic conditions using carbon dioxide as mobile phase. Experimental results compared well with theoretical predictions. There was no significant difference in hmin or ūopt for film thicknesses from 0.25 to 1.0 μm over k = 1 to 5. At a film thickness of 1.0 μm, calculations indicate that approximately 10% resolution loss would be expected for solutes with k = 1.  相似文献   

10.
Polycationic ionic liquids (ILs) are an attractive class of ILs with great potential applicability as gas chromatography stationary phases. A family of hexacationic imidazolium ILs derived from the cycloalkanol family was chemically first prepared in a straightforward manner and then applied for analytical separation purposes. Four tuneable engineering vectors, namely cation ring size structure, anion nature, spatial disposition of cycloalkanol substituents and O‐substitution, were considered as experimental parameters for the design of the desired ionic liquids. A total number of five new phases based on a common benzene core respectively exhibited column efficiencies around to 2500 plates/m, broad operating temperature ranges and also, even more importantly, good thermal stabilities (bleeding temperature between 260 and 365°C), finding variations in the selectivity and analytes elution orders depending on the IL structures. Their solvation characteristics were evaluated using the Abraham solvation parameter model, establishing clear correlations between their cation structure and retention capability with respect to certain analytes. The study of relationships between the ILs structure and solvation parameters gives us an idea of the IL stationary phase to be used for specific separations.  相似文献   

11.
Summary The retention of cyanoalkanes and cyano-alkylbenzenes during SFC was investigated on alkyl and cyanoalkyl-bonded stationary phases and compared to alkane retention. The particular behaviour of short chain homologues was attributed to a silanophilic interaction with surface-OH groups on the silica and inhibition of specific interactions between solutes and C10CN bonded groups.  相似文献   

12.
The linear solvation energy relationship (LSER) was applied to characterize biopartitioning micellar chromatography (BMC) system using monolithic column, and was utilized to compare the above system with other physicochemical and biological processes in this study. The solute volume and HB basicity had the maximum influence on the retention of the solutes, and an increase in the dipolarity/polarizability, HB basicity, HB acidity or excess molar refraction of the solutes decreased the retention. Principal component analysis of LSER coefficients showed that the system had certain similarity to drug biomembrane transport processes, such as blood–brain barrier penetration, transdermal and oral absorption. The quantitative retention–activity relationship (QRAR) of drug penetration across blood–brain barrier was established and its predictive capability for this biological process was evaluated. With the aid of the high flow rate, the monolithic column significantly facilitated the high-throughput analysis of large compounds’ bank without changing the mechanism of the retention in BMC and without impairing good predictive capability of the biological processes. Accordingly, the BMC system, together with monolithic column, allows for high-throughput profiling the biological processes, such as blood–brain barrier penetration.  相似文献   

13.
Summary New polyacrylate liquid crystalline compounds were coated onto glass or fused-silica capillary columns as stationary phases and applied to supercritical fluid chromatography. These stationary phases, were very stable: no bleeding was observed at 200°C and up to 200kg/cm2 pressures of carbon dioxide mobile phase. The wide working range of the capillary column was extended below the g-n transition temperature. Isomeric compounds such as - and -methoxynaphthalene, anthracene and phenanthrene and several phenolic compounds were separated.  相似文献   

14.
This paper describes the results of the evaluation of a new solvation parameter model for reversed-phase ion-pair chromatography by linear gradient elution. This model is described as . The first six terms are the usual solvation parameter equation for neutral solutes, and the seventh term represents the contribution to retention from solute’s ionization. The last term describes the retention increase due to ion-pair effect. Retention times obtained for 60 solutes (neutral, acidic and basic) in acetonitrile/aqueous mobile phases with different ion-pair reagents (phosphoric acid, trifluoroacetic acid, heptafluorobutyric acid, perchloric acid, and hexafluorophosphoric acid) are used to evaluate the capability of the function. It is concluded that the model describes the retention of ionizable/ionized compounds under ion-pair conditions very well. Accordingly, the function extends the application of linear solvation energy relationships (LSERs) to ionizable compounds in ion-pair chromatography, and allows us to easily predict their retention for chromatographic optimization, including selectivity optimization and internal standard selection. Finally, the conclusion can be extended to ioscratic elution.  相似文献   

15.
In recent years, room temperature ionic liquids (RTILs) have proven to be of great interest to analytical chemists. One important development is the use of RTILs as highly thermally stable GLC stationary phases. To date, nearly all of the RTIL stationary phases have been nitrogen-based (ammonium, pyrrolidinium, imidazolium, etc.). In this work, eight new monocationic and three new dicationic phosphonium-based RTILs are used as gas–liquid chromatography (GLC) stationary phases. Inverse gas chromatography (GC) analyses are used to study the solvation properties of the phosphonium RTILs through a linear solvation energy model. This model describes the multiple solvation interactions that the phosphonium RTILs can undergo and is useful in understanding their properties. In addition, the phosphonium-based stationary phases are used to separate complex analyte mixtures by GLC. Results show that the small differences in the solvent properties of the phosphonium ILs compared with ammonium-based ILs will allow for different and unique separation selectivities. Also, the phosphonium-based stationary phases tend to be more thermally stable than nitrogen-based ILs, which is an advantage in many GC applications.  相似文献   

16.
The solvation parameter model is used to characterize the retention properties of five open-tubular column stationary phases (ZB-5 ms, DB-5 ms, DB-XLB, DB-17 ms, and DB-35 ms) based on silarylene-siloxane copolymer chemistries at five equally spaced temperatures over the range 60-140 degrees C. System constant differences and regression models for varied compounds are used to establish the selectivity equivalence of the silarylene-siloxane copolymer stationary phases and to compare their separation characteristics with poly(dimethyldiphenylsiloxane) stationary phases containing a nominally similar concentration of phenyl groups. These studies demonstrate that ZB-5 ms and DB-5 ms are selectivity equivalent. DB-XLB is significantly more dipolar and polarizable than DB-5 ms. In general terms, the silarylenesiloxane copolymer stationary phases are slightly less cohesive and more dipolar and polarizable with similar hydrogen-bond basicity to the poly(dimethyldiphenylsiloxane) stationary phases they were designed to replace. None of the silarylenesiloxane copolymer or poly(dimethyldiphenylsiloxane) stationary phases are hydrogen-bond acidic. Selectivity differences between the two types of stationary phase are temperature dependent and tend to be smaller at higher temperatures within the temperature range studied. Consequently, selectivity differences cannot be globalized without reference to the temperature for the comparison.  相似文献   

17.
GC stationary phases composed of binary mixtures of two polymeric ionic liquids (PILs), namely, poly(1‐vinyl‐3‐hexylimidazolium) bis[(trifluoromethyl)sulfonyl]imide (poly(ViHIm‐NTf2))/poly(1‐vinyl‐3‐hexylimidazolium) chloride (poly(ViHIm‐Cl)) and poly(1‐vinyl‐3‐hexadecylimidazolium) bis[(trifluoromethyl)sulfonyl]imide (poly(ViHDIm‐NTf2))/poly(1‐vinyl‐3‐hexadecylimidazolium) chloride (poly(ViHDIm‐Cl)), were evaluated in terms of their on‐set bleed temperature and separation selectivity. A total of six neat or binary PIL stationary phases were characterized using the solvation parameter model to investigate the effects of the polymeric cation and anion and PIL composition on the system constants of the resulting stationary phases. The hydrogen bond basicity of the mixed poly(ViHIm‐NTf2)/poly(ViHIm‐Cl) stationary phases was enriched linearly with the increase in the poly(ViHIm‐Cl) content. Results revealed that tuning the composition of the stationary phase allowed for fine control of the retention factors and separation selectivity for alcohols and carboxylic acids as well as selected ketones, aldehydes, and aromatic compounds. A reversal of elution order was observed for particular classes of analytes when the weight percentage of the chloride‐based PIL was increased.  相似文献   

18.
Cyclofructan‐based chiral stationary phases were previously shown as a promising possibility for separation of chiral compounds in high performance liquid chromatography. In this work retention and enantiodiscrimination properties of the 3,5‐dimethylphenyl carbamate cyclofructan 7 chiral stationary phase are described in supercritical fluid chromatography. The results obtained in both of the separation methods were compared. A set of compounds with axial or central chirality was used as analytes. The effect of mobile phase composition, that is, addition of different alcohol modifiers and/or trifluoroacetic acid to carbon dioxide, was examined in the supercritical system. Similarly, mobile phases composed of hexane modified with propan‐2‐ol and/or trifluoracetic acid were used in liquid chromatography. A linear free energy relationship model was utilized for characterization of interactions that are decisive for retention and separation in both techniques. Dispersion interactions showed similar negative values using both methods. The main contribution of hydrogen bond acidity was also comparable for both methods. The propensity to interact with n‐ and/or π‐electron pairs of solutes was significant only in the supercritical system.  相似文献   

19.
Summary In this study, several new stationary phases were characterized by principal component analysis. Fourteen new stationary phases, including substituted phenyl and oligoethyleneoxide functionalities on polysiloxane polymers, were tested and compared to three well known stationary phases. The main features of these phases were studied using a series of test solutes of varying chemical characteristics representing the data set for principal component analysis. Two principal compounds were found to account for 99.20% of the variance (the first accounted for 94.96% and the second for 4.24%). The data were represented as a two-dimensional map for visual representation of the characteristics of these stationary phases. The first principal component represented a selectivity based on polarity (r2=0.998), while the second showed Lewis acid-base characteristics of the phases. Polarizable and amphoteric characteristics of these phases also became evident using this evaluation method.  相似文献   

20.
Novel monomeric and polymeric liquid crystalline compounds were synthesized as stationary phases for gas chromatography (GC) and supercritical fluid chromatography (SFC). Monomeric liquid crystalline compounds were used in packed column gas chromatography for the separation of isomeric aromatic compounds and insect sex pheromones. Liquid crystalline polymers possess long nematic ranges and a uniform coating was easily achieved in glass and fused silica capillaries, which could stand temperatures up to 250°C in GC and pressures of 200 MPa at 160°C in SFC. The columns provide excellent selectivity and resolution for fused ring aromatic compounds such as the isomers anthracene and phenanthrene or triphenylene and chrysene.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号