首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 421 毫秒
1.
Anabolic and androgenic steroids (AASs) are synthetic substances related to the primary male sex hormone, testosterone. AASs can be abused in both human and equine sports and, thus, are banned by the International Olympic Committee and the Association of Racing Commissioners International (ARCI). Enforcement of the ban on the use of AASs in racehorses during competition requires a defensible and robust method of analysis. To address this requirement, a high‐throughput ultra high‐performance liquid chromatography–mass spectrometric (UHPLC–MS) method was developed for the detection, quantification and confirmation of 55 AASs in equine plasma. AASs were recovered from equine plasma samples by liquid–liquid extraction with methyl tert‐butyl ether (MTBE). Analytes were chromatographically separated on a sub‐2 µm particle size C18 column with a mobile phase gradient elution and detected by selected‐reaction monitoring (SRM) on a triple quadrupole mass spectrometer. AASs with isobaric precursor ions were either chromatographically resolved or mass spectrometrically differentiated by unique precursor‐to‐product ion transitions. A few of them that could not be resolved by both approaches were differentiated by intensity ratios of three major product ions. All the epimer pairs, testosterone and epitestosterone, boldenone and epiboldenone, nandrolone and epinandrolone, were chromatographically base‐line separated. The limit of detection and that of quantification was 50 pg/ml for most of the AASs, and the limit of confirmation was 100–500 pg/ml. Full product ion spectra of AASs at concentrations as low as 100–500 pg/ml in equine plasma were obtained using the triple quadrupole instrument, to provide complementary evidentiary data for confirmation. The method is sensitive and selective for the detection, quantification and confirmation of multiple AASs in a single analysis and will be useful in the fight against doping of racehorses with AASs. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   

2.
Identification of anabolic androgenic steroids (AAS) is a vital issue in doping control and toxicology, and searching for metabolites with longer detection times remains an important task. Recently, a gas chromatography chemical ionization triple quadrupole mass spectrometry (GC‐CI‐MS/MS) method was introduced, and CI, in comparison with electron ionization (EI), proved to be capable of increasing the sensitivity significantly. In addition, correlations between AAS structure and fragmentation behavior could be revealed. This enables the search for previously unknown but expected metabolites by selection of their predicted transitions. The combination of both factors allows the setup of an efficient approach to search for new metabolites. The approach uses selected reaction monitoring which is inherently more sensitive than full scan or precursor ion scan. Additionally, structural information obtained from the structure specific CI fragmentation pattern facilitates metabolite identification. The procedure was demonstrated by a methandienone case study. Its metabolites have been studied extensively in the past, and this allowed an adequate evaluation of the efficiency of the approach. Thirty three metabolites were detected, including all relevant previously discovered metabolites. In our study, the previously reported long‐term metabolite (18‐nor‐17β‐hydroxymethyl,17α‐methyl‐androst‐1,4,13‐trien‐3‐one) could be detected up to 26 days by using GC‐CI‐MS/MS. The study proves the validity of the approach to search for metabolites of new synthetic AAS and new long‐term metabolites of less studied AAS and illustrates the increase in sensitivity by using CI. Copyright © 2016 John Wiley & Sons, Ltd.  相似文献   

3.
Lipopeptide biosurfactants produced by the Bacillus licheniformis V9T14 strain showed an interesting anti‐adhesion activity against biofilm formation of human pathogenic bacterial strains. The chemical characterisation of the crude extract of V9T14 strain was first developed through electrospray ionisation mass spectrometry (ESI‐MS) and ESI‐MS/MS direct infusions: two sets of molecular ion species belonging to the fengycin and surfactin families were revealed and their structures defined, interpreting their product ion spectra. The LC/ESI‐MS analysis of the crude extract allowed to separate in different chromatogram ranges the homologues and the isoforms of the two lipopeptide families. The extract was then fractionated by silica gel chromatography in two main fractions, I and II. The purified biosurfactants were analysed through a new, rapid and suitable LC/ESI‐MS/MS method, which allowed characterising the composition and the structures of the produced lipopeptides. LC/ESI‐MS/MS analysis of fraction I showed the presence of C13, C14 and C15 surfactin homologues, whose structures were confirmed by the product ion spectra of the sodiated molecules [M + Na]+ at m/z 1030, 1044 and 1058. LC/ESI‐MS/MS analysis of fraction II confirmed the presence of two main fengycin isoforms, with the protonated molecules [M + H]+ at m/z 1478 and 1506 corresponding to C17 fengycin A and C17 fengycin B, respectively. Other homologues (C14 to C16) were revealed and confirmed as belonging to fengycin A or B according to the retention times and the product ions generated, although with the same nominal mass. Finally, a relative percentage content of each homologue for both lipopeptides families in the whole extract was proposed. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   

4.
An UPLC/MS/MS based metabonomic method was developed and applied to the elucidation of biomarker of metformin action. The plasma metabolite profiling in healthy volunteers before and after per os metformin was determined with UPLC/MS/MS and analyzed by using multivariate statistics. Significant difference in endogenous metabolite profiles was revealed before and after administration of metformin. Four biomarkers found were lysophosphatidylcholines (LPCs), and their structures were tentatively identified to be 16:0 LPC, 18:0 LPC, 18:1 LPC and 18:2 LPC according to the molecular ions information and corresponding fragments of product ion scan. Lysophosphatidylcholine in blood may be involved in metformin treatment. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   

5.
Spectra database search has become the most popular technique for the identification of unknown chemicals, minimizing the need for authentic reference chemicals. In the present study, an isomer‐specific high‐energy collision‐induced dissociation (CID) MS/MS spectra database of 12 isomeric O‐hexyl methylphosphonic acids (degradation markers of nerve agents) was created. Phosphonate anions were produced by the electrospray ionization of phosphonic acids or negative‐ion chemical ionization of their fluorinated derivatives and were analysed in a hybrid magnetic‐sector–time‐of‐flight tandem mass spectrometer. A centre‐of‐mass energy (Ecom) of 65 eV led to an optimal sequential carbon–carbon bond breakage, which was interpreted in terms of charge remote fragmentation. The proposed mechanism is discussed in comparison with the routinely used low‐energy CID MS/MS. Even‐mass (odd‐electron) charge remote fragmentation ion series were diagnostic of the O‐alkyl chain structure and can be used to interpret unknown spectra. Together with the odd‐mass ion series, they formed highly reproducible, isomer‐specific spectra that gave significantly higher database matches and probability factors (by 1.5 times) than did the EI MS spectra of the trimethylsilyl derivatives of the same isomers. In addition, ionization by negative‐ion chemical ionization and electrospray ionization resulted in similar spectra, which further highlights the general potential of the high‐energy CID MS/MS technique. Copyright © 2011 John Wiley & Sons, Ltd.  相似文献   

6.
In order to have overall chemical material information of Kai‐Xin‐San (KXS), the reliable ultra‐high‐performance liquid chromatography quadrupole time‐of‐flight mass spectrometer (UHPLC–Q‐TOF‐MS) and ultra‐fast liquid chromatography mass spectrometer (UFLC‐MS/MS) methods were developed for the identification and determination of the major constituents in KXS. Moreover, the UHPLC–Q‐TOF‐MS method was also applied to screen for multiple absorbed components in rat plasma after oral administration of KXS. The UHPLC–Q‐TOF‐MS method was achieved on Agilent 6520 Q‐TOF mass and operated in the negative ion mode. Good separation was performed on a ZORBAX Eclipse Plus C18 column with a gradient elution at a flow rate of 0.2 ml/min. A total of 92 compounds in KXS were identified or tentatively characterized based on their exact molecular weights, fragmentation patterns, and literature data. A total of 26 compounds including 23 prototype components and three metabolites were identified in rat plasma after oral administration of KXS. Then, 16 major bioactive constituents were chosen as the benchmark substances to evaluate the quality of KXS. Their quantitative analyses were performed by a triple quadrupole tandem mass spectrometer (MS/MS) operating in multiple‐reaction monitoring mode(MRM). The analysis was completed with a gradient elution at a flow rate of 0.4 ml/min within 35 min. The simple and fast method was validated and showed good linearity, precision, and recovery. Furthermore, the method was successful applied for the determination of 16 compounds in KXS. All results would provide essential data for identification and quality control of active chemical constituents in KXS. Copyright © 2016 John Wiley & Sons, Ltd.  相似文献   

7.
Studies on steroid metabolism are of utmost importance to improve the detection capabilities of anabolic androgenic steroids (AASs) misuse in sports drug testing. In humans, glucuronoconjugates are the most abundant phase II metabolites of AAS. Bisglucuronidation is a reaction where two separated functional groups on the same molecule are conjugated with glucuronic acid. These metabolites have not been studied in depth for steroids and could be interesting markers for doping control. The aim of the present work was to study the ionization and collision‐induced dissociation of steroid bisglucuronides to be able to develop mass spectrometric analytical strategies for their detection in urine samples after AAS administration. Because steroid bisglucuronides are not commercially available, 19 of them were qualitatively synthesized to study their mass spectrometric behavior. Bisglucuronides ionized as [M+NH4]+ in positive mode, and as [M–H] and [M–2H]2− in negative mode. The most specific product ions of steroid bisglucuronides in positive mode resulted from the neutral losses of 387 and 405 Da (corresponding to [M+NH4–NH3–2gluc–H2O]+ and [M+NH4–NH3–2gluc–2H2O]+, respectively, being “gluc” a dehydrated glucuronide moiety), and in negative mode, the fragmentation of [M–2H]2− showed ion losses of m /z 175 and 75 (gluc and HOCH2CO2, respectively). On the basis of the common behavior, a selected reaction monitoring method was developed to detect bisglucuronide metabolites in urine samples. As a proof of concept, urines obtained after administration of norandrostenediol were studied, and a bisglucuronide metabolite was detected in those urines. The results demonstrate the usefulness of the analytical strategy to detect bisglucuronide metabolites in urine samples, and the formation of these metabolites after administration of AAS.  相似文献   

8.
Using high-resolution quadrupole time-of-flight mass spectrometry along with an electrospray ionization source (ESI-QqTOF-MS), accurate molecular weights of 13 steroid saponins extracted from the rhizomes of Dioscorea panthaica were acquired and the corresponding molecular formulae obtained. In order to elucidate the fragmentation pathways of steroid saponins in D. panthaica, 10 authentic samples were investigated using ESI-QqTOF-MS/MS. In addition, atmospheric pressure chemical ionization mass spectrometry combined with ion trap tandem mass spectrometry (APCI-IT-MS/MS) was used to analyze the structures of 13 steroid saponins in D. panthaica. Through the analysis of their tandem mass data, diagnostic fragment ions of the spirostanol and furostanol steroid saponins in D. panthaica were detected as m/z 271.2056 and 253.1951. In addition, four pairs of isomers were detected and the possible structures of four unknown steroid saponins in D. panthaica speculated. ESI-TOF and APCI-MS(n) have proved to be effective tools for research on fragmentation mechanism of steroid saponins and the rapid determination of native steroid saponins in extract mixture, thereby avoiding tedious derivation and separation steps.  相似文献   

9.
Like many new designer drugs of abuse, synthetic cannabinoids (SC) have structural or positional isomers which may or may not all be regulated under law. Differences in acute toxicity may exist between isomers which impose further burden in the fields of forensic toxicology, medicine and legislation. Isomer differentiation therefore becomes crucial from these standpoints as new designer drugs continuously emerge with just minor positional modifications to their preexisting analogs. The aim of this study was to differentiate the positional isomers of JWH‐081. Purchased standard compounds of JWH‐081 and its positional isomers were analyzed by gas chromatography‐electron ionization‐mass spectrometry (GC‐EI‐MS) first in scan mode to investigate those isomers who could be differentiated by EI scan spectra. Isomers with identical or near‐identical EI spectra were further subjected to GC‐tandem mass spectrometry (MS/MS) analysis with appropriate precursor ions. EI scan was able to distinguish 3 of the 7 isomers: 2‐methoxy, 7‐methoxy and 8‐methoxy. The remaining isomers exhibited near‐identical spectra; hence, MS/MS was performed by selecting m/z 185 and 157 as precursor ions. 3‐Methoxy and 5‐methoxy isomers produced characteristic product ions that enabled the differentiation between them. Product ion spectrum of 6‐methoxy isomer resembled that of JWH‐081; however, the relative ion intensities were clearly different from one another. The combination of EI scan and MS/MS allowed for the regioisomeric differentiation of the targeted compounds in this study. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   

10.
There is a renewed interest in lobelia alkaloids because of their activity on the central nervous system. Lobeline, the most active of them, a nicotinic receptor ligand and neurotransmitter transporter inhibitor, is a candidate pharmacotherapy for metamphetamine abuse. In the present work, high‐performance liquid chromatography coupled with electrospray ionization tandem mass spectrometry in positive ion mode was used for investigating the alkaloid profile in Lobelia inflata L. Chromatographic separations were achieved on a Gemini C6‐phenyl reversed‐phase column providing good peak shape and improved selectivity. Being mostly 2,6‐disubstituted piperidines, lobelia alkaloids presented abundant [M + H]+ ions with typical fragmentation. Identification was possible from a few specific ions, especially those resulting from excision of one of the substituents. Based on fragmentation pattern of lobeline as reference compound, 52 alkaloids were identified in the aqueous methanolic extract of L. inflata in contrast to the previously known some 20. Structural variability of these alkaloids identified arises basically from their substituents which can be phenyl‐2‐ketoethyl‐ or phenyl‐2‐hydroxyethyl units as well as their methyl‐, ethyl‐ or propyl‐ homologues attached in different combinations. Several propyl homologue lobelia alkaloids and five hydroxypiperidine derivatives were found in the plant at the first time. In addition to 8‐O‐esters of 2‐monosubstituted piperidine alkaloids previously reported by us in L. inflata, a 3‐hydroxy‐3‐phenylpropanoic acid ester of hydroxyallosedamine ring‐substituted was also identified as a new natural product. High‐performance liquid chromatography‐electrospray ionization tandem mass spectrometry can be successfully applied to Lobeliacae plant samples in the routine screening for new and known bioactive constituents, quality control of the crude drug, lobelia herba, alkaloid production studies, breeding and chemotaxonomy. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   

11.
This study describes a method for the screening of methylenedioxyamphetamine‐ and piperazine‐derived compounds in urine by liquid chromatography‐tandem mass spectrometry. These substances, characterized by possessing common moieties, are screened using precursor ion and neutral loss scan mode and then quantified in multiple reaction monitoring acquisition mode. Based on the product‐ion spectra of different known molecules, chosen as ‘model’, characteristic neutral losses and product ions were selected: piperazines were detected in precursor ion scan of m/z 44 and neutral loss of 43 and 86 while amphetamines in precursor ion scan of m/z 133, 135 and 163. The applicability of the screening approach was studied in blank urine spiked with selected analytes and processed by solid‐phase extraction. Linearity, matrix effect, precision, accuracy, limits of detection and limits of quantification were evaluated both for the screening and the quantification methods. The ability of the screening method to provide semi‐quantitative data was demonstrated. This method appears to be a useful tool for the identification of designer drugs derived from piperazines or methylenedioxyamphetamines and can be potentially applied to other drug classes. Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   

12.
A new analytical technique for the structural elucidation of four representative phenidate analogues possessing a secondary amine residue, which leads to a major/single amine‐representative fragment/product ion at m/z 84 both in their GC‐EI‐MS and LC‐ESI‐MS/MS spectra, making their identification ambiguous, was developed. The method is based on “in vial” chemical derivatization with isobutyl chloroformate in both aqueous and organic solutions, followed by liquid chromatography‐electrospray ionization mass spectrometry (LC‐ESI‐MS/MS). The resulting carbamate derivatives promote rich fragmentation patterns with full coverage of all substructures of the molecule, enabling detailed structural elucidation and unambiguous identification of the original compounds at low ng/mL levels.  相似文献   

13.
Parkinson's disease (PD) is a very serious neurological disorder, and current methods of treatment fail to achieve long‐term control. SCH 420814 is a potent, selective and orally active adenosine A2A receptor antagonist discovered by Schering‐Plough. Stability testing provides evidence of the quality of a bulk drug when exposed to the influence of environmental factors. Understanding the drug degradation profiles is critical to the safety and potency assessment of the drug candidate for clinical trials. As a result, identification of degradation products has taken an important role in drug development process. In this study, a rapid and sensitive method was developed for the structural determination of the degradation products of SCH 420814 formed under different forced conditions. The study utilizes a combination of liquid chromatography–tandem‐mass spectrometry (LC‐MS/MS) and Fourier Transform (FT) MS techniques to obtain complementary information for structure elucidation of the unknowns. This combination approach has significant impact on degradation product identification. A total of ten degradation products of SCH 420814 were characterized using the developed method. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   

14.
The use of chemical warfare agents has become an issue of emerging concern. One of the challenges in analytical monitoring of the extremely toxic ‘V’‐type chemical weapons [O‐alkyl S‐(2‐dialkylamino)ethyl alkylphosphonothiolates] is to distinguish and identify compounds of similar structure. MS analysis of these compounds reveals mostly fragment/product ions representing the amine‐containing residue. Hence, isomers or derivatives with the same amine residue exhibit similar mass spectral patterns in both classical EI/MS and electrospray ionization‐MS, leading to unavoidable ambiguity in the identification of the phosphonate moiety. A set of five ‘V’‐type agents, including O‐ethyl S‐(2‐diisopropylamino)ethyl methylphosphonothiolate (VX), O‐isobutyl S‐(2‐diethylamino)ethyl methylphosphonothiolate (RVX) and O‐ethyl S‐(2‐diethylamino)ethyl methylphosphonothiolate (VM) were studied by liquid chromatography/electrospray ionization/MS, utilizing a QTRAP mass detector. MS/MS enhanced product ion scans and multistage MS3 experiments were carried out. Based on the results, possible fragmentation pathways were proposed, and a method for the differentiation and identification of structural isomers and derivatives of ‘V’‐type chemical warfare agents was obtained. MS/MS enhanced product ion scans at various collision energies provided information‐rich spectra, although many of the product ions obtained were at low abundance. Employing MS3 experiments enhanced the selectivity for those low abundance product ions and provided spectra indicative of the different phosphonate groups. Study of the fragmentation pathways, revealing some less expected structures, was carried out and allowed the formulation of mechanistic rules and the determination of sets of ions typical of specific groups, for example, methylphosphonothiolates versus ethylphosphonothiolates. The new group‐specific ions elucidated in this work are also useful for screening unknown ‘V’‐type agents and related compounds, utilizing precursor ion scan experiments. Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   

15.
Electrospray ionization coupled with collision‐induced dissociation (CID) and tandem mass spectrometry (MS/MS) is a commonly used technique to analyze the chemical composition of steroids. However, steroids are structurally similar compounds, making it difficult to interpret their product‐ion spectra. Electron transfer dissociation (ETD), a relatively new technique for protein and peptide fragmentation, has been shown to provide more detailed structural information. In this study, we compared the ability of CID with that of ETD to differentiate between eight 3,20‐dioxosteroids that had been derivatizated with a quaternary ammonium salt, Girard reagent P (GirP), at room temperature or after exposure to microwave irradiation to generate doubly charged ions. We found that the derivatization of steroid with GirP hydrazine occurred in less than 10 min when the reaction was carried out in the presence of microwave irradiation compared to 30 min when the reaction was carried out at room temperature. According to the MS/MS spectra, CID provided rich, structurally informative ions; however, the spectra were complex, thereby complicating the peak assignment. In contrast, ETD generated simpler spectra, making it easier to recognize individual peaks. Remarkably, both CID and ETD were allowed to differentiate of steroid isomers, 17α‐hydroxyprogesterone (17OHP) and deoxycorticosterone (DOC), but the signature ions obtained from CID were less intense than those generated by ETD, which generated much clearer spectra. These results indicate that ETD in conjunction with CID can provide more structural information for precise characterization of steroids. Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   

16.
The metabolic profile of polar (methanol) and non‐polar (hexane) extracts of Curcuma domestica, a widely used medicinal plant, was established using various different analytical techniques, including GC‐FID, GC‐MS, HR‐GC‐MS and analytical HPLC‐ESI‐MS/MS by means of LTQ‐Orbitrap technology. The major non‐volatile curcuminoids curcumin, demethoxycurcumin and bisdemethoxycurcumin were identified when their chromatographic and precursor ion masses were compared with those of authentic standard compounds. In this paper we describe for the first time a GC/MS‐based method for metabolic profiling of the hydrophilic extract. We also identified 61 polar metabolites as TMS derivatives. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   

17.
Metopimazine (MPZ) is a phenothiazine derivative used to prevent emesis during chemotherapy where few structural analysis of the aforementioned compound have been described in the literature. Thus, this work reports, for the first time, the detailed study of fragmentation pathways of MPZ and its metabolite (AMPZ) using electrospray ionization (EI) with multistage mass spectrometry (ESI‐MSn) in positive‐ion mode. The structures of 21 product ions were identified and their accurate masses were determined using high resolution mass spectrometry (HRMS) experiments. Characteristic product ions of these two phenothiazine derivatives are more particularly displayed along with differences between their relative abundances and their structures checked by H/D exchange experiments. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   

18.
An ultra‐performance liquid chromatography/tandem mass spectrometry (UPLC/MS/MS) method for fast‐throughput analysis of eight anabolic and androgenic steroids (AAS) in equine plasma is reported. Analytes were recovered by liquid‐liquid extraction using methyl tert‐butyl ether, separated on a 1.9 µm C18 reversed‐phase column, and analyzed in positive electrospray ionization mode on a triple quadrupole mass spectrometer with selected reaction monitoring (SRM) and full product ion scans. Two SRM ion transitions were monitored for each AAS during screening to obtain highly selective screening results. Full product ion spectra of excellent quality for AAS, at 100 pg/0.5 mL in plasma, devoid of interfering spectra from impurities in plasma, were obtained. To our knowledge, this is the first report on the acquisition of full product ion spectra at such a low analyte concentration and plasma volume using a triple quadrupole instrument. In addition to product ion intensity ratios obtained from three SRM scans for identifying AAS in equine plasma, full product ion spectra were used as supporting evidence for confirmation. For quantification, deuterium‐labeled testosterone and stanozolol were used as internal standards (ISs). The limits of detection, quantification and confirmation were 6.25–12.5 pg/0.5 mL, 25 pg/0.5 mL and 50–100 pg/0.5 mL, respectively. There was no significant matrix effect on the analysis of all eight AAS. Intra‐day precision and accuracy were 2–15% and 91–107%, respectively. Inter‐day precision and accuracy were 1–21% and 94–110%, respectively. Total analysis time was 5 min. To date, the method has been successfully used in the analysis of >12 000 samples for AAS in plasma samples from racehorses competing in the State of Pennsylvania. The method is fast, selective, reproducible, and reliable. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   

19.
Using the information on the interatomic separations in a molecule, one can construct structural invariants that are the components of a molecular profile. The entries in the profile are derived by averaging different powers of the interatomic separations, suitably normalized so that the increasing powers do not dominate the sequence. Although only a few hundreds of structures have been so analyzed, no two different chemical structures were found to be characterized by the same sequences. A critical test for the conjecture that molecular profiles are unique is to consider structurally closely related systems that are very similar and have several similar properties. In this contribution we investigated the cuboctahedron and the accompanying polyhedron obtained by rotating half of the cuboctahedron against the other half, resulting in the so-called twist cutoctahedron. We show that even this pair of closely related structures has different profiles. We have also examined the generalized molecular profiles obtained by inserting n additional points along each edge of the polyhedra. The convergence of the profiles as n increases is discussed. It appears thus that these generalized molecular profiles, called line profiles or bond profiles, are likely to lead to a unique characterization of structures in which not only the geometry of atoms is recorded but also the geometry of the connectivity of the structure. © 1996 John Wiley & Sons, Inc.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号