首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 171 毫秒
1.
吴友谊  屈锋  林金明 《中国化学》2005,23(2):155-159
An end-channel amperometric detector with a guide tube for working electrode was designed and integrated on a home-made glass microchip. The guide tube was directly patterned and fabricated at the end of the detection reservoir, which made the fixation and alignment of working electrode relatively easy. The fabrication was carried out in a two-step etching process. A 30 μm carbon fiber microdisk electrode and Pt cathode were also integrated onto the amperometric detector. The baseline separation of dopamine (DA), catechol (CA) and epinephrine (EP) was achieved within 80 s. Relative standard deviations of not more than 5.2% were obtained for both peak currents and migration times of DA and CA (n=5). Using standard adding method, DA in tLrine and plasma samples was detected. The recoveries were in the range of 83%—103%.  相似文献   

2.
We demonstrate here the power and flexibility of free‐solution conjugate electrophoresis (FSCE) as a method of separating DNA fragments by electrophoresis with no sieving polymer network. Previous work introduced the coupling of FSCE with ligase detection reaction (LDR) to detect point mutations, even at low abundance compared to the wild‐type DNA. Here, four large drag‐tags are used to achieve free‐solution electrophoretic separation of 19 LDR products ranging in size from 42 to 66 nt that correspond to mutations in the K‐ras oncogene. LDR‐FSCE enabled electrophoretic resolution of these 19 LDR‐FSCE products by CE in 13.5 min (E = 310 V/cm) and by microchip electrophoresis in 140 s (E = 350 V/cm). The power of FSCE is demonstrated in the unique characteristic of free‐solution separations where the separation resolution is constant no matter the electric field strength. By microchip electrophoresis, the electric field was increased to the maximum of the power supply (E = 700 V/cm), and the 19 LDR‐FSCE products were separated in less than 70 s with almost identical resolution to the separation at E = 350 V/cm. These results will aid the goal of screening K‐ras mutations on integrated “sample‐in/answer‐out” devices with amplification, LDR, and detection all on one platform.  相似文献   

3.
Zhang Y  Lee HK  Li SF 《Talanta》1998,45(4):613-618
Fast, efficient separation of five free acid forms of porphyrins was achieved in a short capillary and a chip, respectively. The capillary was 6 cm long from injection end to detector with an electric field strength of 214 V cm(-1). Separations were performed within 5 min. A glass microchip device was fabricated using standard photolithographic procedures and chemical wet etching. The channels were sealed using a direct bonding technique. For a separation length of 2.8 cm with electric field strength of 500 V cm(-1), electrophoretic separations with baseline resolution were achieved in less than 2 min. A variable wavelength epi-fluorescence microscope was used as an on-column detector.  相似文献   

4.
A microfabricated thin glass chip for contactless conductivity detection in chip capillary electrophoresis is presented in this contribution. Injection and separation channels were photolithographed and chemically etched on the surface of substrate glass, which was bonded with a thin cover glass (100 μm) to construct a new microchip. The chip was placed over an independent contactless electrode plate. Owing to the thinness between channel and electrodes, comparatively low excitation voltage (20–110 V in Vp–p) and frequency (40–65 kHz) were suitable, and favorable signal could be obtained. This microchip capillary electrophoresis device was used in separation and detection of inorganic ions, amino acids and alkaloids in amoorcorn tree bark and golden thread in different buffer solutions. The detection limit of potassium ion was down to 10 μmol/L. The advantages of this microchip system exist in the relative independence between the microchip and the detection electrodes. It is convenient to the replacement of chip and other operations. Detection in different position of the channel would also be available.  相似文献   

5.
《Electrophoresis》2018,39(14):1802-1807
An improved method for the concurrent determination and separation of cations and anions by microchip electrophoresis with capacitively coupled contactless conductivity detection (ME‐C4D) is described. Two kinds of microchip structures were designed. The first microchip has a long bent separation channel. And for the defects of the first microchip, the second microchip with a Y‐type separation channel has been proposed. The background electrolyte (BGE) composed of 20 mm His/MES and 0.01 mm CTAB was optimized for inhibiting the electroosmotic flow (EOF). Due to the low electroosmotic flow, the cations and anions migrate in opposite directions and can be separated from each other. With the precisely controlled high‐voltage, cations and anions can be migrated in microchannels according to our requirements and sequentially detected by a C4D detector built in‐house. Samples containing K+, Na+, Li+, Cl, F and PO43− were analyzed simultaneously in a single run (within 140 s) by both methods. The reproducibility obtained by both methods remained below 5% for migration time and within 3.5–9.1% for peak areas. The proposed concurrent determination methods are inexpensive, simple, fast, ease of operation, high degree of integration.  相似文献   

6.
韩彬  王平利  张丽华  屈锋  梁振  邓玉林  张玉奎 《色谱》2009,27(4):383-386
芯片自由流电泳对于来源稀少的重要生物样品的连续预分级和微制备具有重要的意义。本文在自由流芯片的微分离腔内,通过原位光引发聚合反应制备了聚丙烯酰胺整体材料,并进行了pH梯度的固定化,从而构建了基于固定化pH梯度整体(M-IPG)材料的芯片自由流等电聚焦模式(μFF-IEF)。利用该新型分离模式,实现了异硫氰酸荧光素(FITC)标记的最小等电点相差0.33的甘氨酸、脯氨酸和赖氨酸混合物的分离,且分离结果优于传统的μFF-IEF。实验结果表明,通过发展基于M-IPG材料的μFF-IEF模式,不仅可以避免在缓冲溶液中添加两性电解质对后续采用其他模式分离和质谱鉴定的干扰,而且可以获得较高的分离和富集能力,有望在微量样品的连续分离和制备方面发挥重要作用。  相似文献   

7.
A method to integrate a carbon microelectrode with a microfabricated palladium decoupler for use in microchip capillary electrophoresis (CE) is detailed. As opposed to previous studies with decouplers for microchip CE, the working electrode material, which is made by micromolding of a carbon ink, is different from the decoupling electrode material (palladium). The manner in which the working electrode is made does not add additional etching or lithographic steps to the fabrication of the glass electrode plate. The hybrid poly(dimethylsiloxane)/glass device was characterized with fluorescence microscopy and by monitoring the CE-based separation of dopamine. Hydrodynamic voltammograms exhibited diffusion-limited currents occurring at potentials above +1.0 V. It was also shown that the half-wave potential does not shift as the separation potential is changed, as is the case in nondecoupled systems. Gated injections of dopamine in a 25 mM boric acid buffer (pH 9.2) showed a linear response from 200 to 5 microM (r2 = 0.9992), with a sensitivity of 5.47 pA/microM and an estimated limit of detection of 2.3 microM (0.621 fmol, S/N = 3). This is the first report of coupling a carbon electrode with a decoupler in microchip CE.  相似文献   

8.
Narrow peaks are important to high‐resolution and high‐speed separation of DNA fragments by capillary electrophoresis and microchip capillary electrophoresis. Detection cell length is one of the broadening factors, which is often ignored in experiments. However, is it always safe to neglect detection cell length under any condition? To answer this question, we investigated the influence of detection cell length by simulation and experiments. A parameter named as detection cell length ratio was proposed to directly compare the detection cell length and the spatial length of sample band. Electrophoretic peaks generated by various detection cell length ratios were analyzed. A simple rule to evaluate the peak broadening due to detection cell length was obtained. The current states of the detection cell length of detection system and their reliabilities in capillary electrophoresis and microchip capillary electrophoresis were analyzed. Microchip capillary electrophoresis detection with an ultra‐small detection cell length of 0.36 μm was easily achieved by using an image sensor.  相似文献   

9.
Simultaneous electrophoresis of both native and Sodium dodecyl sulfate (SDS) proteins was observed on a single microchip within 20 min. The capillary array prevented lateral diffusion of SDS components and avoided cross contamination of native protein samples. The planar sputtered electrode format provided a more uniform distribution of separation voltage into each of the 36 parallel microchannel capillaries than platinum wire electrodes commonly used in conventional electrophoresis. The customized geometry of the stacking capillary machined into the cover plate of the microchip facilitated reproducible sample injection without the requirement for stacking gel. Polyimide served as a mask and facilitated insulation of the anode and cathode to prevent electrode lift off and deterioration during continuous electrophoresis, even at a constant current of 8 mA. Improved protein separation was observed during capillary electrophoresis at lower currents. Ferguson plot analysis confirmed the electrophoretic mobility of native globular proteins in accordance with their charge and size. Corresponding Ferguson plot analysis of SDS-associated proteins on the same chip confirmed separation of marker proteins according to their molecular weight.  相似文献   

10.
Wu Y  Lin JM  Su R  Qu F  Cai Z 《Talanta》2004,64(2):338-344
An end-channel amperometric detector with a guide tube for working electrode was designed and integrated on a home-made glass microchip. The guide tube was directly patterned and fabricated at the end of the detection reservoir, which made the fixation and alignment of working electrode relatively easy. The fabrication was carried out in a two-step etching process. A 30 μm carbon fiber microdisk electrode and Pt cathode were also integrated onto the amperometric detector. The characteristics and primary performance of the home-made microchip capillary electrophoresis (MCCE) were investigated with neurotransmitters. The baseline separation of dopamine (DA), catechol (CA) and epinephrine (EP) was achieved within 80 s. Separation parameters such as injection time, buffer components, pH of the buffer were studied. Relative standard deviations of not more than 6.0% were obtained for both peak currents and migration times. Under the selected separation conditions, the response for DA was linear from 5 to 200 μM and from 20 to 800 μM for CA. The limits of detection of DA and CA were 0.51 and 2.9 μM, respectively (S/N=3).  相似文献   

11.
A preparative scale free‐flow IEF device is developed and characterized with the aim of addressing needs of molecular biologists working with protein samples on the milligrams and milliliters scale. A triangular‐shape separation channel facilitates the establishment of the pH gradient with a corresponding increase in separation efficiency and decrease in focusing time compared with that in a regular rectangular channel. Functionalized, ion‐permeable poly(acrylamide) gel membranes are sandwiched between PDMS and glass layers to both isolate the electrode buffers from the central separation channel and also to selectively adjust the voltage efficiency across the separation channel to achieve high electric field separation. The 50×70 mm device is fabricated by soft lithography and has 24 outlets evenly spaced across a pH gradient between pH 4 and 10. This preparative free‐flow IEF system is investigated and optimized for both aqueous and denaturing conditions with respect to the electric field and potential efficiency and with consideration of Joule‐heating removal. Energy distribution across the functionalized polyacrylamide gel is investigated and controlled to adjust the potential efficiency between 15 and 80% across the triangular separation channel. The device is able to achieve constant electric fields high as 370±20 V/cm through the entire triangular channel given the separation voltage of 1800 V, enabling separation of five fluorescent pI markers as a demonstration example.  相似文献   

12.
Free‐flow isoelectric focusing (FFIEF) has the merits of mild separation conditions, high recovery and resolution, but suffers from the issues of ampholytes interference and high cost due to expensive carrier ampholytes. In this paper, a home‐made carrier ampholyte‐free FFIEF system was constructed via orientated migration of H+ and OH? provided by electrode solutions. When applying an electric field, a linear pH gradient from pH 4 to 9 (R2 = 0.994) was automatically formed by the electromigration of protons and hydroxyl ions in the separation chamber. The carrier ampholyte‐free FFIEF system not only avoids interference of ampholyte to detection but also guarantees high separation resolution by establishing stable pH gradient. The separation selectivity was conveniently adjusted by controlling operating voltage and optimizing the composition, concentration and flow rate of the carrier buffer. The constructed system was applied to separation of proteins in egg white, followed by MADLI‐TOF‐MS identification. Three major proteins, ovomucoid, ovalbumin and ovotransferrin, were successfully separated according to their pI values with 15 mmol/L Tris‐acetic acid (pH = 6.5) as carrier buffer at a flow rate of 12.9 mL/min.  相似文献   

13.
With a given free‐flow electrophoresis device, reasonable conditions (electric field strength, carrier buffer conductivity, and flow rate) are crucial for an optimized separation. However, there has been no experimental study on how to choose reasonable general conditions for a free‐flow electrophoresis device with a thermoelectric cooler in view of Joule heat generation. Herein, comparative experiments were carried out to propose the selection procedure of general conditions in this study. The experimental results demonstrated that appropriate conditions were (i) <67 V/cm electric field strength; (ii) lower than 1.3 mS/cm carrier buffer conductivity (Tris‐HCl: 20 mM Tris was titrated by HCl to pH 8.0); and (iii) higher than 3.6 mL/min carrier buffer flow rate. Furthermore, under inappropriate conditions (e.g. 400 V voltage and 40 mM Tris‐HCl carrier buffer), the free‐flow electrophoresis separation would be destroyed by bubbles caused by more Joule heating. Additionally, a series of applications under the appropriate conditions were performed with samples of model dyes, proteins (bovine serum albumin, myoglobin, and cytochrome c), and cells (Escherichia coli, Streptococcus thermophilus, and Saccharomyces cerevisiae). The separation results showed that under the appropriate conditions, separation efficiency was obviously better than that in the previous experiments with randomly or empirically selected conditions.  相似文献   

14.
In this work, a simple and novel sheath‐flow sample injection method (SFSIM) is introduced to reduce the band broadening of free‐flow zone electrophoresis separation in newly developed self‐balance free‐flow electrophoresis instrument. A needle injector was placed in the center of the separation inlet, into which the BGE and sample solution were pumped simultaneously. BGE formed sheath flow outside the sample stream, resulting in less band broadening related to hydrodynamics and electrodynamics. Hemoglobin and C‐phycocyanin were successfully separated by the proposed method in contrast to the poor separation of free‐flow electrophoresis with the traditional injection method without sheath flow. About 3.75 times resolution enhancement could be achieved by sheath‐flow sample injection method.  相似文献   

15.
Mecker LC  Filla LA  Martin RS 《Electroanalysis》2010,22(19):2141-2146
In this communication, we demonstrate that a carbon ink microelectrode array, where the electrodes are held at the same potential, affords significant signal enhancement in microchip electrophoresis with amperometric detection. The ability to fabricate an array of carbon ink microelectrodes with a palladium decoupler was demonstrated and the resulting electrodes were integrated with a valving microchip design. The use of an 8 electrode array led to a significant improvement in the limits of detection at the expense of separation resolution due to the increased detection zone size. It is also shown that microdialysis sampling can be integrated with the microchip device and a multi-analyte separation achieved.  相似文献   

16.
This article presents a new, simple and rapid continuous separation method by combination of flow injection with capillary electrophoresis designed for the analysis of basic traditional Chinese medicines. The device was produced using commercial capillary and components readily available in analytical laboratory. In double-T configuration, the designed horizontal separation channel was 25 microm i.d. x 146 mm length (an effective separation length of 93 mm) quartz capillary, with two vertical elicitation arms produced from 0.5 mm i.d. pump tubing. The capillary was embedded in a 40 x 20 x 3 mm organic glass base. Using the double-T configuration, continuous introduction of a series of samples was achieved. More than 3.00 resolution for ephedrine and pseudo-ephedrine were obtained using 100 mm borate buffer (pH 9.80) within 8 min in 25 microm separation channel with an electrical field strength of 137 V/cm (UV detection at 215 nm). The linear calibration range was 50-1500 microg/mL (ephedrine, r = 0.9982; pseudo-ephedrine, r = 0.9990) for both analytes. The limits of detection were 2.65 micro g/mL for ephedrine and 2.92 microg/mL for pseudo-ephedrine. In this device, the contents of ephedrine and pseudo-ephedrine in five Chinese medicinal preparations were determined with RSDs (n = 5) in range 1.16-4.51% and recoveries in range 90.4-114.6%.  相似文献   

17.
High voltage electrodes for electrophoresis have been integrated into a polymer layer that can be reversibly bound to glass microchips for electrophoretic separations. By using the liquid precursor to the polymer polydimethylsiloxane (PDMS), platinum electrodes and reservoirs can be positioned prior to solidification, providing a simple and flexible method for electrode interface construction. Field strengths up to 875 V cm(-1) over an 8 cm separation channel can be applied to the system without any loss in performance of the interface. The interface can function as an electro-fluidic interface between the high voltage power supply and the separation channel and, when reversibly sealed to an etched glass plate, functions as a cover plate establishing a hybrid PDMS-glass microchip in which the electrodes are directly integrated onto the device. The versatility of this approach is not only demonstrated by separating DNA fragments in a novel buffer sieving matrix, but also with the molecular diagnostic analysis of a variety of DNA samples for Duschenne Muscular Dystrophy and cytomegalovirus (CMV) infection, using both microchip interface configurations.  相似文献   

18.
Li HF  Lin JM  Su RG  Uchiyama K  Hobo T 《Electrophoresis》2004,25(12):1907-1915
A simple and easy-to-use integrated laser-induced fluorescence detector for microchip electrophoresis was constructed and evaluated. The fluid channels and optical fiber channels in the glass microchip were fabricated using standard photolithographic techniques and wet chemical etching. A 473 nm diode-pumped laser was used as the excitation source, and the collimation and collection optics and mirrors were discarded by using a multimode optical fiber to couple the excitation light straight into the microchannel and placing the microchip directly on the top of the photomultiplier tube. A combination of filter systems was incorporated into a poly(dimethylsiloxane) layer, which was reversibly sealed to the bottom of the microchip to eliminate the scattering excitation light reaching to the photomultiplier tube. Fluorescein/calcein samples were taken as model analytes to evaluate the performance with respect to design factors. The detection limits were 0.05 microM for fluorescein and 0.18 microM for calcein, respectively. The suitability of this simple detector for fluorescence detection was demonstrated by baseline separation of fluorescein isothiocyanate (FITC)-labeled arginine, phenylalanine, and glycine and FITC within 30 s at separation length of 3.8 cm and electrical field strength of 600 V/cm.  相似文献   

19.
In this paper, a simple, effective and green capillary electrophoresis separation and detection method was developed for the quantification of underivatized amino acids (dl ‐phenylalanine; dl ‐tryptophan) using β‐Cyclodextrin and chiral ionic liquid ([TBA] [l ‐ASP]) as selectors. Separation parameters such as buffer concentrations, pH, β‐CD and chiral ionic liquid concentrations and separation voltage were investigated for the enantioseparation in order to achieve the maximum possible resolution. A good separation was achieved in a background electrolyte composed of 15 mm sodium tetraborate, 5 mm β‐CD and 4 mm chiral ionic liquid at pH 9.5, and an applied voltage of 10 kV. Under optimum conditions, linearity was achieved within concentration ranges from 0.08 to 10 µg/mL for the analytes with correlation coefficients from 0.9956 to 0.9998, and the analytes were separated in less than 6 min with efficiencies up to 970,000 plates/m. The proposed method was successfully applied to the determination of amino acid enantiomers in compound amino acids injections, such as 18AA‐I, 18AA‐II and 3AA. Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   

20.
A simple and sensitive method for determination of free amino acids in milk by microchip electrophoresis (MCE) coupled with laser‐induced fluorescence (LIF) detection was developed. Seven kinds of standard amino acids were derivated with sulfoindocyanine succinimidyl ester (Cy5) and then perfectly measured by MCE‐LIF within 150 s. The parameters of MCE separation were carefully investigated to obtain the optimal conditions: 100 mmol·L?1 sodium borate solution (pH 10.0) as running buffer solution, 0.8 kV as injection voltage, 2.2 kV as separation voltage etc. The linear range of the detection of amino acids was from 0.01 µmol·L?1 to 1.0 µmol·L?1 and the detection limit was as low as about 1.0 nmol·L?1. This MCE‐LIF method was applied to the measurements of free amino acids in actual milk samples and satisfactory experimental results were achieved.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号