首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
In this study, the effect of addition Calcium carbonate (CaCO3) filler component on solid state thermal decomposition procedures of Polypropylene-Low Density Polyethylene (PP-LDPE; 90/10 wt%) blends involving different amounts (5, 10, 20 wt%) Calcium carbonate (CaCO3) was investigated using thermogravimetry in dynamic nitrogen atmosphere at different heating rates. An integral composite procedure involving the integral iso-conversional methods such as the Tang (TM), the Kissinger-Akahira-Sunose method (KAS), the Flynn-Wall-Ozawa (FWO), an integral method such as Coats-Redfern (CR) and master plots method were employed to determine the kinetic model and kinetic parameters of the decomposition processes under non-isothermal conditions. The Iso-conversional methods indicated that the thermal decomposition reaction should conform to single reaction model. The results of the integral composite procedures of TG data at various heating rates suggested that thermal processes of PP-LDPE-CaCO3 composites involving different amounts of CaCO3 filler component (5, 10, 20 wt%) followed a single step with approximate activation energies of 226.7, 248.9, and 252.0 kJ.mol? 1 according to the FWO method, respectively and those of 231.3, 240.1 and 243.0 kJ mol? 1 at 5°C min? 1 according to the Coats-Redfern method, the reaction mechanisms of all the composites was described from the master plots methods and are Pn model for composite C-1, Rn model for composites C-2 and C-3, respectively. It was found that the thermal stability, activation energy and thermal decomposition process changed by the increasing CaCO3 filler weight in composite structure.  相似文献   

2.
Calcium carbonate (CaCO3)/polystyrene (PS) nanoparticles (<100 nm) with core–shell structure were synthesized by atomized microemulsion technique. The polymer chains were anchored onto the surface of nano‐CaCO3 through triethoxyvinyl silane (TEVS) as a coupling agent. Ammonium persulfate (APS), sodium dodecyl sulfate (SDS) and n‐pentanol were used as initiator, surfactant, and cosurfactant, respectively. Polymerization mechanism of core–shell latex particles was discussed. Encapsulation of nano‐CaCO3 by PS was confirmed by using transmission electron microscope (TEM). Grafting percentage of core–shell particles was investigated by Thermogravimetric Analyzer (TGA). Nano‐CaCO3/PS core–shell particles were characterized by Fourier transform infrared (FTIR) spectrophotometer and differential scanning calorimeter (DSC). The results of FTIR revealed existence of a strong interaction at the interface of nano‐CaCO3 particle and PS, which implies that the polymer chains were successfully grafted onto the surface of nano‐CaCO3 particle through the link of the coupling agent. In addition, TGA and DSC results indicated an enhancement of thermal stability of core–shell materials compared with the pure nano‐PS. Nano‐CaCO3/PS particles were blended with polypropylene (PP) matrix on Brabender Plastograph by melt process with different wt% of loading (i.e. 0.1–1 wt%). The interfacial adhesion between nano‐CaCO3 particles and PP matrix was significantly improved when the nano‐CaCO3 particles were grafted with PS, which led to increased thermal, rheological, and mechanical properties of (nano‐CaCO3/PS)/PP composites. Scanning electron microscope (SEM) and atomic force microscope (AFM) images showed a perfect dispersion of the nano‐CaCO3 particles in PP matrix. Copyright © 2011 John Wiley & Sons, Ltd.  相似文献   

3.
The elegant approach of in situ deposition technique was used for the synthesis of nano CaCO3. the nanosize of particles was confirmed by the X‐ray diffraction (XRD) technique. Differential scanning calorimetry (DSC) was used for determination of the enthalpy. The nano CaCO3 polypropylene (PP) composites were prepared by taking 2 and 10 wt % of different nanosizes (21–39 nm) of CaCO3. Conversion of the α phase to β was observed in the case of 2 wt % of a 30‐nm sized amount of CaCO3 in a PP composite. The decrement in ΔH and percent crystallinity, as well as the increment in melt temperature were recorded for 6 wt % nano CaCO3 with a decrease in nanosize from 39 to 21 nm. The increment in tensile strength with an increase in the amount of nano CaCO3 was observed, and the lower particle size showed greater improvement. The improvement in thermal and mechanical properties is because of the formation of a greater number of small spherulites uniformly present in the PP matrix. © 2004 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 43: 107–113, 2004  相似文献   

4.
Phase structure of composite polypropylene (PP)/ethylene–propylene–rubber (EPR)/coated nano‐CaCO3 composites, used in the manufacture of bumpers, with and without compatibilizers has been investigated using scanning electron microscopy (SEM), dynamic mechanical analysis (DMA) mechanical tests, and differential scanning calorimetry (DSC). Blends of various compositions were prepared using a corotating twin‐screw extruder. The experimental results indicated that the dispersion of nanoparticles in (PP/EPR) depends on their surface (stearic acid and fatty acid coatings). In both cases, the final morphology is the core–shell structure in which EPR acts as the shell part encapsulating coated nano‐CaCO3. In this case, EPR‐g‐MAH copolymer does not improve the interface between (PP/EPR) and nanoparticles but PEP propylene ethylene copolymer should be preferentially localized at the interface of PP and (EPR/nano‐CaCO3) phases generating an improved adherence, which will ensure a better cohesion of the whole material. According to the nature of the compatibilizers and surface treatment, it is believed that the synergistic effect of both the EPR elastomer and CaCO3 nanoparticles should account for the balanced performance of the ternary composites. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   

5.
Synthesis, characterization and thermal analysis of polyaniline (PANI)/ZrO2 composite and PANI was reported in our early work. In this present, the kinetic analysis of decomposition process for these two materials was performed under non-isothermal conditions. The activation energies were calculated through Friedman and Ozawa-Flynn-Wall methods, and the possible kinetic model functions have been estimated through the multiple linear regression method. The results show that the kinetic models for the decomposition process of PANI/ZrO2 composite and PANI are all D3, and the corresponding function is ƒ(α)=1.5(1−α)2/3[1−(1-α)1/3]−1. The correlated kinetic parameters are E a=112.7±9.2 kJ mol−1, lnA=13.9 and E a=81.8±5.6 kJ mol−1, lnA=8.8 for PANI/ZrO2 composite and PANI, respectively.  相似文献   

6.
A modified nano-calcium carbonate (R-CCR) was prepared by coating a layer of unsaturated hydroxylfatty acid on the surface of CCR powders using a solid state method; the latter were commercial nano-CaCO3 modified with stearic acid. FTIR studies indicate that the modifier is combined on the surface of CaCO3. PP/EPDM/nano-CaCO3 ternary composites were prepared by a melt-mixing method. SEM and TEM were utilized to examine the morphology of the composites. The tensile fractured surface of PP/EPDM/R-CCR showed a fibroid morphology and large-scale yield deformation. The impact fractured surface showed that the amount of cavities in the PP/EPDM/R-CCR system was increased, however their size diminished obviously. R-CCR particles were dispersed uniformly in the PP matrix, and their compatibility was distinctly improved as compared to CCR when the amount of R-CCR was 15 h−1. The tensile strength remained nearly constant (reduced from 27.6 MPa to 27.5 MPa), while the impact strength increased from 9.6 kJ/m2 to 15.4 kJ/m2 as CCR was replaced by R-CCR. Meanwhile, the bending strength and bending modulus also increased correspondingly. Furthermore, the impact strength of PP/EPDM/R-CCR was maintained at a high level (15.4 kJ/m2), which was more than the sum of that of PP/EPDM and PP/R-CCR (6.6 kJ/m2 and 6.1 kJ/m2 respectively). This indicates that the R-CCR and EPDM have a significant synergistic toughening effect on PP while maintaining the strength and modulus of virgin PP. Both the storage modulus G′ and loss modulus G″ of PP/EPDM and PP/EPDM/R-CCR composites increase with increasing frequency, but the values of G′ and G″ of the tertiary composite are relatively higher than those of the binary system. The loss factor and viscosity decrease with increasing frequency, but there is little difference between tertiary and binary composites. The apparent viscosity η of the tertiary system containing R-CCR is lower than that of the tertiary system containing CCR and virgin PP. The viscosity of the composites sig-nificantly decreases with increasing shear rate. The mea-sured mechanical properties of the composites indicate that replacing CCR with R-CCR for binary composites could simultaneously enhance the toughness and strength of PP. __________ Translated from Acta Polymerica Sinica, 2008, 4 (in Chinese)  相似文献   

7.
A Haake torque rheometer equipped with an internal mixer has been used to study the influence of microscale calcium carbonate (micro‐CaCO3) and nanoscale calcium carbonate (nano‐CaCO3) on the fusion, thermal, and mechanical characteristics of rigid poly(vinyl chloride) (PVC)/micro‐CaCO3 and PVC/nano‐CaCO3 composites, respectively. The fusion characteristics discussed in this article include the fusion time, fusion temperature, fusion torque, and fusion percolation threshold (FPT). The fusion time, fusion temperature, and FPT of rigid PVC/calcium carbonate (CaCO3) composites increase with an increase in the addition of micro‐CaCO3 or nano‐CaCO3. In contrast, the fusion torque of rigid PVC/CaCO3 composites decreases with an increase in the addition of micro‐CaCO3 or nano‐CaCO3. The results of thermal analysis show that the first thermal degradation onset temperature (Tonset) of rigid PVC/micro‐CaCO3 is 7.5 °C lower than that of PVC. Meanwhile, the glass‐transition temperature (Tg) of rigid PVC/micro‐CaCO3 is similar to that of PVC. However, Tonset and Tg of PVC/nano‐CaCO3 composites can be increased by up to 30 and 4.4%, respectively, via blending with 10 phr nano‐CaCO3. Mechanical testing results for PVC/micro‐CaCO3 composites with the addition of 5–15 phr micro‐CaCO3 and PVC/nano‐CaCO3 composites with the addition of 5–20 phr nano‐CaCO3 are better than those of PVC. © 2005 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 44: 451–460, 2006  相似文献   

8.
In order to enhance the thermal stability of the barium salt of 5,5′‐bistetrazole (H2BT), carbohydrazide (CHZ) was used to build [Ba(CHZ)(BT)(H2O)2]n as a new energetic coordination compound by using a simple aqueous solution method. It was characterized by FT‐IR spectroscopy, elemental analysis, and single‐crystal X‐ray diffraction. The crystal belongs to the monoclinic P21/c space group [a = 8.6827(18) Å, b = 17.945(4) Å, c = 7.2525 Å, β = 94.395(2)°, V = 1126.7(4) Å3, and ρ = 2.356 g · cm–3]. The BaII cation is ten‐coordinated with one BT2–, two shared carbohydrazides, and four shared water molecules. The thermal stabilities were investigated by differential scanning calorimetry (DSC) and thermal gravity analysis (TGA). The dehyration temperature (Tdehydro) is at 187 °C, whereas the decomposition temperature (Td) is 432 °C. Non‐isothermal reaction kinetics parameters were calculated by Kissinger's method and Ozawa's method to work out EK = 155.2 kJ · mol–1, lgAK = 9.25, and EO = 158.8 kJ · mol–1. The values of thermodynamic parameters, the peak temperature (while β → 0) (Tp0 = 674.85 K), the critical temperature of thermal explosion (Tb = 700.5 K), the free energy of activation (ΔG = 194.6 kJ · mol–1), the entropy of activation (ΔS = –66.7 J · mol–1), and the enthalpy of activation (ΔH = 149.6 kJ · mol–1) were obtained. Additionally, the enthalpy of formation was calculated with density functional theory (DFT), obtaining ΔfH°298 ≈ 1962.6 kJ · mol–1. Finally, the sensitivities toward impact and friction were assessed according to relevant methods. The result indicates the compound as an insensitive energetic material.  相似文献   

9.
2‐Phenylethanol, racemic 1‐phenyl‐2‐propanol, and 2‐methyl‐1‐phenyl‐2‐propanol have been pyrolyzed in a static system over the temperature range 449.3–490.6°C and pressure range 65–198 torr. The decomposition reactions of these alcohols in seasoned vessels are homogeneous, unimolecular, and follow a first‐order rate law. The Arrhenius equations for the overall decomposition and partial rates of products formation were found as follows: for 2‐phenylethanol, overall rate log k1(s−1)=12.43−228.1 kJ mol−1 (2.303 RT)−1, toluene formation log k1(s−1)=12.97−249.2 kJ mol−1 (2.303 RT)−1, styrene formation log k1(s−1)=12.40−229.2 kJ mol−1(2.303 RT)−1, ethylbenzene formation log k1(s−1)=12.96−253.2 kJ mol−1(2.303 RT)−1; for 1‐phenyl‐2‐propanol, overall rate log k1(s−1)=13.03−233.5 kJ mol−1(2.303 RT)−1, toluene formation log k1(s−1)=13.04−240.1 kJ mol−1(2.303 RT)−1, unsaturated hydrocarbons+indene formation log k1(s−1)=12.19−224.3 kJ mol−1(2.303 RT)−1; for 2‐methyl‐1‐phenyl‐2‐propanol, overall rate log k1(s−1)=12.68−222.1 kJ mol−1(2.303 RT)−1, toluene formation log k1(s−1)=12.65−222.9 kJ mol−1(2.303 RT)−1, phenylpropenes formation log k1(s−1)=12.27−226.2 kJ mol−1(2.303 RT)−1. The overall decomposition rates of the 2‐hydroxyalkylbenzenes show a small but significant increase from primary to tertiary alcohol reactant. Two competitive eliminations are shown by each of the substrates: the dehydration process tends to decrease in relative importance from the primary to the tertiary alcohol substrate, while toluene formation increases. © 1999 John Wiley & Sons, Inc. Int J Chem Kinet 31: 401–407, 1999  相似文献   

10.
Samples of water based commercial acrylic resin paints were spread in a film form on slides, dried at room temperature and exposed to solar radiation for up to eight months. The characterization and quantification of resins and charges in the white paint emulsion were carried out for the thermal decomposition. Besides this, X-ray diffractometry was used to identify CaCO3 as charge and TiO2 (rutile phase) as pigment. It was observed through thermal techniques similar behavior to the samples even though with varied exposure time. Kinetic studies of the samples allowed to obtain the activation energy (E a) and Arrhenius parameters (A) to the thermal decomposition of acrylic resin to three different commercial emulsion (called P1, P2, P3) through non-isothermal procedures. The values of E a varied regarding the exposition time (eight months) and solar radiation from 173 to 197 kJ mol−1 (P1 sample), from 175 to 226 kJ mol−1 (P2 sample) and 206 to 197 kJ mol−1 (P3 sample). Kinetic Compensation Effect (KCE) observed for samples P2 and P3 indicate acrylic resin s present in these may be similar in nature. This aspect could be observed by a small difference in the thermal behavior of the TG curves from P1 to P2 and P3 sample. The simulated kinetic model to all the samples was the autocatalytic Šesták-Berggreen.  相似文献   

11.
The gas‐phase elimination kinetics of the above‐mentioned compounds were determined in a static reaction system over the temperature range of 369–450.3°C and pressure range of 29–103.5 Torr. The reactions are homogeneous, unimolecular, and obey a first‐order rate law. The rate coefficients are given by the following Arrhenius expressions: ethyl 3‐(piperidin‐1‐yl) propionate, log k1(s?1) = (12.79 ± 0.16) ? (199.7 ± 2.0) kJ mol?1 (2.303 RT)?1; ethyl 1‐methylpiperidine‐3‐carboxylate, log k1(s?1) = (13.07 ± 0.12)–(212.8 ± 1.6) kJ mol?1 (2.303 RT)?1; ethyl piperidine‐3‐carboxylate, log k1(s?1) = (13.12 ± 0.13) ? (210.4 ± 1.7) kJ mol?1 (2.303 RT)?1; and 3‐piperidine carboxylic acid, log k1(s?1) = (14.24 ± 0.17) ? (234.4 ± 2.2) kJ mol?1 (2.303 RT)?1. The first step of decomposition of these esters is the formation of the corresponding carboxylic acids and ethylene through a concerted six‐membered cyclic transition state type of mechanism. The intermediate β‐amino acids decarboxylate as the α‐amino acids but in terms of a semipolar six‐membered cyclic transition state mechanism. © 2005 Wiley Periodicals, Inc. Int J Chem Kinet 38: 106–114, 2006  相似文献   

12.
张忠海  库宗军  刘义  屈松生 《中国化学》2005,23(9):1146-1150
以氯化镝、甘氨酸和L-酪氨酸为原料合成了配合物Dy(Tyr)(Gly)3Cl3·3H2O. 用溶解-反应热量计测得配合物在298. 15K时的标准摩尔生成焓为–(4287. 10±2. 14) kJ / mol. 并用TG-DTG技术对配合物进行了非等温热分解动力学研究, 推断出配合物第二步热分解反应的动力学方程为: dα/dT=3. 14 ×1020 s-1/βexp(-209. 37 kJ / mol /RT)(1-α)2.  相似文献   

13.
A new synthetic strategy, the combination of living polymerization of ylides and ring‐opening polymerization (ROP), was successfully used to obtain well‐defined polymethylene‐b‐poly(ε‐caprolactone) (PM‐b‐PCL) diblock copolymers. Two hydroxyl‐terminated polymethylenes (PM‐OH, Mn= 1800 g mol?1 (PDI = 1.18) and Mn = 6400 g mol?1 (PDI = 1.14)) were prepared using living polymerization of dimethylsulfoxonium methylides. Then, such polymers were successfully transformed to PM‐b‐PCL diblock copolymers by using stannous octoate as a catalyst for ROP of ε‐caprolactone. The GPC traces and 1H NMR of PM‐b‐PCL diblock copolymers indicated the successful extension of PCL segment (Mn of PM‐b‐PCL = 5200–10,300 g mol?1; PDI = 1.06–1.13). The thermal properties of the double crystalline diblock copolymers were investigated by differential scanning calorimetry (DSC). The results indicated that the incorporation of crystalline segments of PCL chain effectively influence the crystalline process of PM segments. The low‐density polyethylene (LDPE)/PCL and LDPE/polycarbonate (PC) blends were prepared using PM‐b‐PCL as compatibilizer, respectively. The scanning electron microscopy (SEM) observation on the cryofractured surface of such blend polymers indicates that the PM‐b‐PCL diblock copolymers are effective compatibilizers for LDPE/PCL and LDPE/PC blends. Porous films were fabricated via the breath‐figure method using different concentration of PM‐b‐PCL diblock copolymers in CH2Cl2 under a static humid condition. © 2010 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem, 2011  相似文献   

14.
The carbon content of mesostructured organic‐inorganic hybrid material of a cylindrical block copolymer template of poly(2‐vinylpyridine)‐block‐poly(allyl methacrylate) (P2VP‐b‐PAMA) and ammonium paramolybdate (APM) could be reduced by thermal depolymerization. By calcination in vacuo at 320 °C the PAMA core can be completely removed while the remaining P2VP brush preserves the mesostructure. The P2VP‐APM composite can then be carburized in‐situ to MoOxCy in a second pyrolysis step without any additional carbon source but P2VP. The molybdenum oxycarbide nanotubes obtained, form hierarchically porous non‐woven structures, which were tested as catalyst in the decomposition of NH3. They proved to be catalytically active at temperatures above 450 °C. The activation energy was estimated from an Arrhenius Plot to be 127 kJ · mol–1.  相似文献   

15.
The thermal decomposition of [Co(NH3)6]2(C2O4)3·4H2O was studied under isothermal conditions in flowing air and argon. Dissociation of the above complex occurs in three stages. The kinetics of the particular stages thermal decomposition have been evaluated. The RN and/or AM models were selected as those best fitting the experimental TG curves. The activation energies,E, and lnA were calculated with a conventional procedure and by a new method suggested by Kogaet al. [10, 11]. Comparison of the results have showed that the Arrhenius parameters values estimated by the use of both methods are very close. The calculated activation energies were in air: 96 kJ mol–1 (R1.575, stage I); 101 kJ mol–1 (Ain1.725 stage II); 185 kJ mol–1 (A 2.9, stage III) and in argon: 66 kJ mol–1 (A 1.25, stage I); 87 kJ mol–1 (A 1.825, stage II); 133 kJ mol–1 (A 2.525, stage III).  相似文献   

16.
The thermal stability and kinetics of isothermal decomposition of diosgenin were studied by thermogravimetry (TG) and Differential Scanning Calorimeter (DSC). The activation energy of the thermal decomposition process was determined from the analysis of TG curves by the methods of Flynn-Wall-Ozawa, Doyle, ?atava-?esták and Kissinger, respectively. The mechanism of thermal decomposition was determined to be Avrami-Erofeev equation (n = 1/3, n is the reaction order) with integral form G(α) = [?ln(1 ? α)]1/3 (α = 0.10–0.80). E a and logA [s?1] were determined to be 44.10 kJ mol?1 and 3.12, respectively. Moreover, the thermodynamics properties of ΔH , ΔS , and ΔG of this reaction were 38.18 kJ mol?1, ?199.76 J mol?1 K?1, and 164.36 kJ mol?1 in the stage of thermal decomposition.  相似文献   

17.
The preparation of superparamagnetic composites obtained by CaCO3 mineralization from supersaturate aqueous solutions is presented. The preparation was conducted in the presence of oleic acid stabilized magnetite nanoparticles as a water‐based magnetic fluid and insoluble templates as gel‐like cross‐linked polymeric beads. The presence of the magnetic particles in the composites provides a facile way for external manipulation using a permanent magnet, thus allowing the separation and extraction of magnetically modified materials. Two ion exchangers based on divinylbenzene/ethyl acrylate/acrylonitrile cross‐linked copolymer—a cation ion exchanger (CIE) and an amphoteric ion exchanger (AIE)—were used, as well as different addition orders of magnetite and CaCO3 crystals growth precursors. The morphology of the composites was investigated by SEM, the polymorphs content by X‐ray diffraction, and the thermal stability by thermogravimetric analysis. Polymer, CaCO3, and magnetite in the composite particles were shown to be present by energy dispersive X‐ray (EDX), XPS, and TEM. The sorption capacity for CuII ions was tested, as compared to samples prepared without magnetite.  相似文献   

18.
马海霞  宋纪蓉  胡荣祖  李珺 《中国化学》2003,21(12):1558-1561
Introduction3 Nitro 1,2 ,4 triazol 5 one (NTO)metalcomplexeshavemanyspecialstructuresandsomepotentialusesinammunition .1 4 Wepreviouslypreparedanddeterminedthecrystalstructureofitsmagnesiumcomplex ,5andinthispaper ,wediscusseditsthermalbehaviorbyDSCandTG/DTGtechniquesandstudieditsnon isothermalkineticsbythemeansoftheKissingermethod ,theOzawamethod ,thedifferentialmethodandtheintegralmethod .ExperimentalSample[Mg(H2 O) 6 ](NTO) 2 ·2H2 Owaspreparedasfollows :AcalculatedamountofMg(OH…  相似文献   

19.
The study of the thermal decomposition of the tetrafluoroammonium salts (NF4)2NiF6 and NF4SbF6 by differential scanning calorimetry also gave enthalpies of decomposition for (NF4)2NiF6 and NF4SbF6 of 134.7 ± 13.0 kJ mol?1 and 245.6 ± 28.9 kJ mol?1 respectively. The corresponding standard enthalpies of formation are found to be ?1033 and ?1649 kJ mol?1 respectively.  相似文献   

20.
The kinetics of decomposition of an [Pect·MnVIO42?] intermediate complex have been investigated spectrophotometrically at various temperatures of 15–30°C and a constant ionic strength of 0.1 mol dm?3. The decomposition reaction was found to be first‐order in the intermediate concentration. The results showed that the rate of reaction was base‐catalyzed. The kinetic parameters have been evaluated and found to be ΔS = ? 190.06 ± 9.84 J mol?1 K?1, ΔH = 19.75 ± 0.57 kJ mol?1, and ΔG = 76.39 ± 3.50 kJ mol?1, respectively. A reaction mechanism consistent with the results is discussed. © 2002 Wiley Periodicals, Inc. Int J Chem Kinet 35: 67–72, 2003  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号