首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Nuclear magnetic resonance (NMR) spectroscopic analysis of metabonome/metabolome has widespread applications in biomedical science researches. However, most of NMR resonances for urinary metabolites remain to be fully assigned. In the present study, human urine samples from two healthy volunteers were pre-treated with C18 solid-phase extraction and the resultant 5 sub-fractions were subjected to one- and two-dimensional NMR studies, including 1H J-Resolved, 1H-1H COSY, 1H-1H TOCSY, 1H-13C HSQC, and HMBC 2D NMR. More than 70 low molecular weight metabolites were identified, and complete assignments of 1H and 13C resonances including many complex coupled spin systems were obtained.  相似文献   

2.
Cartilage-forming lesions include tumours that can vary in severity from benign enchondromas to high-grade malignant chondrosarcomas. Chondrosarcoma is the second most frequent malignant bone tumour, accounting for 20–30% of all malignant bone neoplasms. Surgery is the standard treatment for cartilage tumours (CTs); however, their incidental diagnosis and the difficult differentiation of low-grade lesions like chondrosarcoma grade I from benign entities like enchondroma are challenges for clinical management. In this sense, the search for circulating biomarkers for early detection and prognosis is an ongoing interest. Targeted metabolomics is a powerful tool that can propose potential biomarkers in biological fluids as well as help to discover disturbed metabolic pathways to reveal tumour pathogenesis. In this context, the aim of this study was to investigate the 1H nuclear magnetic resonance metabolomic serum profile of patients with CTs contrasted with healthy controls. Forty-one metabolites were identified and quantified; the multivariate statistical methods principal component analysis and partial least squares discriminant analysis reveal a clear separation of the CT group, that is, the differential metabolites that were involved in two main metabolic pathways: the taurine and hypotaurine metabolism and synthesis and degradation of ketone bodies. Our results represent preliminary work for emergent serum-based diagnostics or prognostic methods for patients with chondrogenic tumours.  相似文献   

3.
Multiple‐quantum 1H NMR spectroscopy has been finding a renewed interest for its possible applications in the analysis of mixtures of small molecules, due to its simplification properties. A crucial aspect of this application of multiple‐quantum NMR is the sensitivity of the spectrum intensity to the molecular structure and to the parameterization of the experiment, which could result in the missing of some components. We demonstrate that a general scheme to overcome this drawback consists in varying the experiment parameterizations over a small number of values, selected according the values of the couplings and the relaxation rates. Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   

4.
A study of contact ion-pair formation between the neodymium (III) and nitrate ions in aqueous solvent mixtures has been carried out by a direct, low temperature, nitrogen-15 (15N) nuclear magnetic resonance (NMR) technique. At low temperatures, –90 to –120°C ligand exchange is slow enough to permit the observation of15N NMR signals for uncomplexed nitrate ion, and this anion in the primary solvation shell of Nd(III). In aqueous mixtures with inert acetone and Freon-12, resonance signals for Nd(NO3)2+, Nd(NO3) 2 1+ , and two higher complexes are observed. Signal areas indicate these additional species are possibly a combination of the tetra-, penta-, and hexanitrato complexes, but not the trinitrato. In water-methanol, a medium of higher dielectric constant, complexation is much less and signals only for the mono-and dinitrato complexes are observed. The effect of solvent on complexation is demonstrated more clearly by a series of measurements in water-methanol-acetone mixtures.  相似文献   

5.
Costus speciosus had been used in oriental systems of medicines, to treat diverse ailments. The present study was focused on NMR, GC-MS and UPLC/ESI-MS/MS-based metabolic profiling of C. speciosus. This metabolic study resulted in the identification of 91 and quantification of 69 metabolites. Caffeic acid derivatives previously unreported in C. speciosus were also identified. High quantity of steroidal saponins namely methyl protogracillin (297.97 ± 0.07 mg/g dried wt.) and dioscin (158.72 ± 0.27 mg/g dried wt.) were observed in butanol fraction of rhizomes. Health care metabolites including caffeic acid (37.88 ± 0.04 mg/g dried wt.) and trehalose (75.12 ± 0.08 mg/g dried wt.) were also detected in ethyl acetate and aqueous fractions of rhizomes, respectively. Metabolites of nutraceutical and biological significance including eremanthine (5.14 ± 0.68%, peak area), tocopherols (~22%), sterols (~25%) were also identified from hexane fractions of rhizomes and leaves using GC-MS. The analytical techniques used had successfully differentiated metabolites composition among leaves and rhizomes.  相似文献   

6.
We have studied by means of High Resolution Magic Angle Spinning Nuclear Magnetic Resonance (HR-MAS NMR) the metabolic profile of the famous Sicilian lemon known as 'Interdonato Lemon of Messina PGI’. The PGI Interdonato Lemon of Messina possesses high organoleptic and healthy properties and is recognised as one of the most nutrient fruits. In particular, some of its constituents are actively studied for their chemo-preventive and therapeutic properties. In this paper, we have determined by means of HR-MAS NMR spectroscopy the molar concentration of the main metabolites constituent the juice of PGI Interdonato Lemon of Messina in comparison with that of the not-PGI Interdonato Lemon of Turkey. Our aim is to develop an analytical technique, in order to determine a metabolic fingerprint able to reveal commercial frauds in national and international markets.  相似文献   

7.
A direct, low-temperature nitrogen-15(15N) NMR technique has been applied to the study of inner-shell complex formation between praseodymium(III) and nitrate ion in aqueous solvent mixtures. In water-acetone mixtures at –95°C, ligand exchange is slow enough to permit the observation of15N NMR signals for uncomplexed and coordinated nitrate ion, but satisfactory resolution is obtained only by the addition of Freon-12 to these systems for study at –110 to –115°C. Four coordinated nitrate signals are generally observed and a very small signal for an additional complex, or an isomer of one of the others, appears at the highest nitrate concentrations. Signals for the mono-and dinitrato complexes are unambiguously identified, but with the exception of the trinitrato complex, several possibilities exist for the remaining peaks. To overcome excessive viscosity signal broadening, measurements in methanol and ethanol are possible only with praseodymium trifluoromethanesulfonate (triflate). Coordinated nitrate signals in aqueous and anhydrous methanol are observed only for the mono-and dinitrato species, and signal areas indicate a maximum of two moles of nitrate per Pr(III) are complexed. A third signal is evident in the ethanol solution spectra, and the presence of this higher complex was confirmed by area measurement of the fraction of bound nitrate. The extent of complex formation in these solvent systems is attributed to differences in the dielectric constant. A comparison of the complexing tendencies of Pr(III) to other ions studied by this NMR method suggests the possibility of a coordination number change across the lanthanide series. Preliminary15N NMR results for metal-ion complexes with the isothiocyanate ion are presented.  相似文献   

8.
Isomeric mixtures from synthetic or natural origins can pose fundamental challenges for their chromatographic separation and spectroscopic identification. A novel 1D selective NMR experiment, chemical shift selective filter (CSSF)‐TOCSY‐INEPT, is presented that allows the extraction of 13C NMR subspectra of discrete isomers in complex mixtures without physical separation. This is achieved via CSS excitation of proton signals in the 1H NMR mixture spectrum, propagation of the selectivity by polarization transfer within coupled 1H spins, and subsequent relaying of the magnetization from 1H to 13C by direct INEPT transfer to generate 13C NMR subspectra. Simple consolidation of the subspectra yields 13C NMR spectra for individual isomers. Alternatively, CSSF‐INEPT with heteronuclear long‐range transfer can correlate the isolated networks of coupled spins and therefore facilitate the reconstruction of the 13C NMR spectra for isomers containing multiple spin systems. A proof‐of‐principle validation of the CSSF‐TOCSY‐INEPT experiment is demonstrated on three mixtures with different spectral and structural complexities. The results show that CSSF‐TOCSY‐INEPT is a versatile, powerful tool for deconvoluting isomeric mixtures within the NMR tube with unprecedented resolution and offers unique, unambiguous spectral information for structure elucidation. Copyright © 2014 John Wiley & Sons, Ltd.  相似文献   

9.
The efficient profiling of highly polar and charged metabolites in biological samples remains a huge analytical challenge in metabolomics. Over the last decade, new analytical techniques have been developed for the selective and sensitive analysis of polar ionogenic compounds in various matrices. Still, the analysis of such compounds, notably for acidic ionogenic metabolites, remains a challenging endeavor, even more when the available sample size becomes an issue for the total analytical workflow. In this paper, we give an overview of the possibilities of capillary electrophoresis‐mass spectrometry (CE–MS) for anionic metabolic profiling by focusing on main methodological developments. Attention is paid to the development of improved separation conditions and new interfacing designs in CE–MS for anionic metabolic profiling. A complete overview of all CE–MS‐based methods developed for this purpose is provided in table format (Table 1) which includes information on sample type, separation conditions, mass analyzer and limits of detection (LODs). Selected applications are discussed to show the utility of CE–MS for anionic metabolic profiling, especially for small‐volume biological samples. On the basis of the examination of the reported literature in this specific field, we conclude that there is still room for the design of a highly sensitive and reliable CE–MS method for anionic metabolic profiling. A rigorous validation and the availability of standard operating procedures would be highly favorable in order to make CE–MS an alternative, viable analytical technique for metabolomics.  相似文献   

10.
Commiphora wightii (Arn.) Bhandari, known as guggul, produces a medicinally important gum resin which is used extensively by Ayurvedic physicians to treat various ailments. However, most of the studies on C. wightii have been limited to its gum resin. Comprehensive metabolic profiling of leaves, stem and gum resin samples was undertaken to analyse aqueous and non-aqueous metabolites from three distinct chemotypes (NBRI-101, NBRI-102 and NBRI-103) shortlisted from different agro-climatic zones. GC-MS, HPLC and NMR spectroscopy were used for comprehensive metabolomics. Multivariate analysis showed characteristic variation in quinic and citric acids, myo-inositol and glycine (aqueous metabolites) and 2,6-di-tert-butyl-phenol, trans-farnesol and guggulsterones (non-aqueous metabolites) amongst the three chemotypes. Quinic acid, citric acid and myo-ionositol were detected in substantial quantities from leaves and stem samples which provide opportunities for novel nutraceutical and pharmaceutical formulations. Quinic acid, from the leaves, was identified as a marker metabolite for early selection of high guggulsterones-yielding cultivars.  相似文献   

11.
Humic substances, the main component of soil organic matter, could form an integral part of green and sustainable solutions to the soil fertility problem. However, their global‐scale application is hindered from both scientific and regulatory perspectives by the lack of understanding of the molecular make‐up of these chromatographically inseparable mixtures containing thousands of molecules. Here we show how multidimensional NMR spectroscopy of isotopically tagged molecules enables structure characterization of humic compounds. We illustrate this approach by identifying major substitution patterns of phenolic aromatic moieties of a peat soil fulvic acid, an operational fraction of humic substances. Our methodology represents a paradigm shift in the use of NMR active tags in structure determination of small molecules in complex mixtures. Unlike previous tagging methodologies that focused on the signals of the tags, we utilize tags to directly probe the identity of the molecules they are attached to.  相似文献   

12.
ABSTRACT Proton NMR profiling is nowadays a consolidated technique for the identification of geographical origin of food samples. The common approach consists in correlating NMR spectra of food samples to their territorial origin by multivariate classification statistical algorithms. In the present work, we illustrate an alternative perspective to exploit territorial information, contained in the NMR spectra, which is based on the implementation of a geographic information system (GIS). Nuclear magnetic resonance spectra are used to build a GIS map permitting the identification of territorial regions having strong similarities in the chemical content of the produced food (terroir units). These terroir units can, in turn, be used as input for labeling samples to be analyzed by traditional classification methods. In this work, we describe the methods and the algorithms that permit to produce GIS maps from NMR profiles and apply the described method to the analysis of the geographical distribution of olive oils in an Italian region. In particular, we analyzed by 1H NMR up to 98 georeferenced olive oil samples produced in the Abruzzo Italian region. By using the first principal component of the NMR variables selected according to the Moran test, we produced a GIS map, in which we identified two regions incidentally corresponding to the provinces of Teramo and Pescara. We then labeled the samples according to the province of provenience and built an LDA model that provides a classification ability up to 99% . A comparison between the variables selected in the geostatistics and classification steps is finally performed. Copyright © 2016 John Wiley & Sons, Ltd.  相似文献   

13.
赵素敏  郑虹  路鑫  刘颖  苏本利  许国旺 《色谱》2011,29(4):307-313
糖代谢异常由于其发病率的升高和影响人类的生活质量而日益受到科学研究者的关注。实验中利用液相色谱与质谱(LC-MS)联用技术对糖代谢异常分别进行了代谢组学和磷脂轮廓分析,研究了糖代谢异常中的两个阶段——空腹血糖受损(IFG)和初诊糖尿病(NDD)的代谢差异情况。首先从LC-MS采集到血浆中代谢组学分析及磷脂轮廓分析的原始谱图,通过软件的峰匹配等步骤得到峰表,之后利用多种统计分析方法进行数据分析,通过正交校正的偏最小二乘法(OSC-PLS)对样品进行分型,根据模型的变量重要因子(VIP)、显著性差异检验结果等筛选出差异性代谢物。结果显示: NDD组比IFG组与对照组(N组)比较存在更明显的代谢差异,发生变化的化合物主要为游离脂肪酸、溶血磷脂酰胆碱、磷脂酰乙醇胺、鞘磷脂和磷脂酰胆碱等。  相似文献   

14.
13C NMR at 125.76 MHz with 1H and 2H decoupling, 2H NMR at 76.77 MHz with 1H decoupling, and 1H NMR at 500.14 MHz with 2H decoupling were employed as analytical tools to study the complex mixtures of deuterated ethanes resulting from the catalytic H–D exchange of normal ethane with gas-phase deuterium in the presence of a platinum foil. Reference samples consisting of 1:1 binary mixtures of pure normal ethane and ethane-dn (n=1–6) were used to identify the peak positions in the 13C, 2H, and 1H NMR spectra due to each individual isotopomer, and the effect of isotopic substitution on the chemical shifts was determined in each case. While the NMR of all three nuclei worked well for the identification of the individual components of the 1:1 standard mixtures, both 1H and 2H NMR suffered from inadequate resolution when studying complex reaction mixtures because of the broadening of the lines due to 1H–1H (1H NMR) and 2H–2H (2H NMR) couplings. 13C NMR was therefore determined to be the method of choice for the quantitative analysis of the reaction mixtures. Using the 13C NMR results, a correlation that takes into account the primary and secondary isotope substitution effects on chemical shifts was deduced. This equation was used for the identification of the individual components of the mixtures, and integration of the individual observed resonances was then employed for quantification of their composition. This study shows that 13C NMR with 1H and 2H decoupling is a viable procedure for studying mixtures of deuterated ethanes. Furthermore, the additivity of the isotopic effects on chemical shifts and the transferability of the values obtained with ethane to other molecules makes this approach general for the analysis of other isotopomer mixtures.  相似文献   

15.
16.
Honey‐processed Astragalus, a widely used Qi‐tonifying and immunomodulating herb in traditional Chinese medicine, has strengthened the tonic effects and achieved fewer side effects compared with astragali radix in clinical application. Here, we focus on Qi‐tonifying biomarkers and pathways of honey‐processed Astragalus using urine metabolomics that provide the basis for building the linkage between metabolites in rat urine and its symptoms. The spleen Qi deficiency model group, normal group, astragali radix group, and honey‐processed Astragalus group were implemented to evaluate Qi‐tonifying effects. Twelve potential biomarkers were screened by multivariate statistical analysis by using ultra high performance liquid chromatography with quadrupole time‐of‐flight mass spectrometry. Furthermore, pathways activity profiling showed unique pathways that are primarily involved in tryptophan metabolism, tricarboxylic acids cycle, and methionine metabolism. The results demonstrated that metabolomics coupled with pathway activity profiling were promising tools. It might serve as a novel methodological clue to systematically dissect the underlying Qi‐tonifying mechanism of honey‐processed Astragalus.  相似文献   

17.
18.
Modern applications of 2D NMR spectroscopy to diagnostic screening, metabolomics, quality control, and other high-throughput applications are often limited by the time-consuming sampling requirements along the indirect time domain t1. 2D total correlation spectroscopy (TOCSY) provides unique spin connectivity information for the analysis of a large number of compounds in complex mixtures, but standard methods typically require >100 t1 increments for an accurate spectral reconstruction, rendering these experiments ineffective for high-throughput applications. For a complex metabolite mixture it is demonstrated that absolute minimal sampling (AMS), based on direct fitting of resonance frequencies and amplitudes in the time domain, yields an accurate spectral reconstruction of TOCSY spectra using as few as 16 t1 points. This permits the rapid collection of homonuclear 2D NMR experiments at high resolution with measurement times that previously were only the realm of 1D experiments.  相似文献   

19.
Diets rich in high fructose and salt are increasingly popular in our daily life. A combination consumption of excessive fructose and salt can induce insulin resistance (IR) and hypertension (HT), which are major public health problems around the world. However, the effects of high fructose and salt on systematic metabonome remain unknown, which is very important for revealing the molecular mechanism of IR and HT induced by this dietary pattern. The metabolic profiling in urine, plasma, and fecal extracts from high fructose and salt‐fed rats was investigated by use of 1H nuclear magnetic resonance (NMR)‐based metabonomics approach in this study. Multivariate analysis of NMR data showed the effects of high fructose and salt on the global metabonome. The metabolite analysis in urine and fecal extracts showed the time‐dependent metabolic changes, which displayed metabonomic progression axes from normal to IR and HT status. The changes of 2‐oxoglutarate, creatine and creatinine, citrate, hippurate, trimethylamine N‐oxide (TMAO), and betaine in urine, together with gut microbiota disorder in feces, were observed at the preliminary formation stage of IR and HT (fourth week). At the severe stage (eighth week), the previously mentioned metabolic changes were aggravated, and the changes of lipid and choline metabolism in plasma suggested the increased risk of cardiovascular diseases. These findings provide an overview of biochemistry consequences of high fructose and salt feeding and comprehensive insights into the progression of systematic metabonome for IR and HT induced by this dietary pattern. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   

20.
We introduce a new approach for resolving the NMR spectra of mixtures that relies on the mutual diffusion of dissolved species when a concentration gradient is established within the NMR tube. This is achieved by cooling down a biphasic mixture of triethylamine and deuterated water below its mixing temperature, where a single phase is expected. Until equilibrium is reached, a gradient of concentration, from ‘pure’ triethylamine to ‘pure’ water, establishes within the tube. The amount of time required to reach this equilibrium is controlled by the mutual diffusion coefficient of both species. Moreover, a gradient of concentration exists for each additional compound dissolved in this system, related to the partition coefficient for that compound in the original biphasic state. Using slice selective experiments, it was possible to measure these concentration gradients and use them to separate signals from all the present species. We show the results acquired for a mixture composed of n‐octanol, methanol, acetonitrile and benzene and compare them with those obtained by pulse field gradient NMR. Copyright © 2016 John Wiley & Sons, Ltd.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号