首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Consider a set of n random axis parallel boxes in the unit hypercube in ${\bf R}^{d}$ , where d is fixed and n tends to infinity. We show that the minimum number of points one needs to pierce all these boxes is, with high probability, at least $\Omega_d(\sqrt{n}(\log n)^{d/2-1})$ and at most $O_d(\sqrt{n}(\log n)^{d/2-1}\log \log n)$ . © 2011 Wiley Periodicals, Inc. Random Struct. Alg., 38, 365–380, 2011  相似文献   

2.
Given a graph G=(V, E), let ${\mathcal{P}}$ be a partition of V. We say that ${\mathcal{P}}$ is dominating if, for each part P of ${\mathcal{P}}$, the set V\P is a dominating set in G (equivalently, if every vertex has a neighbor of a different part from its own). We say that ${\mathcal{P}}$ is acyclic if for any parts P, P′ of ${\mathcal{P}}$, the bipartite subgraph G[P, P′] consisting of the edges between P and P′ in ${\mathcal{P}}$ contains no cycles. The acyclic dominating number ad(G) of G is the least number of parts in any partition of V that is both acyclic and dominating; and we shall denote by ad(d) the maximum over all graphs G of maximum degree at most d of ad(G). In this article, we prove that ad(3)=2, which establishes a conjecture of P. Boiron, É. Sopena, and L. Vignal, DIMACS/DIMATIA Conference “Contemporary Trends in Discrete Mathematics”, 1997, pp. 1–10. For general d, we prove the upper bound ad(d)=O(dlnd) and a lower bound of ad(d)=Ω(d). © 2009 Wiley Periodicals, Inc. J Graph Theory 64: 292–311, 2010  相似文献   

3.
We consider a model for gene regulatory networks that is a modification of Kauffmann's J Theor Biol 22 (1969), 437–467 random Boolean networks. There are three parameters: $n = {\rm the}$ number of nodes, $r = {\rm the}$ number of inputs to each node, and $p = {\rm the}$ expected fraction of 1'sin the Boolean functions at each node. Following a standard practice in thephysics literature, we use a threshold contact process on a random graph on n nodes, in which each node has in degree r, to approximate its dynamics. We show that if $r\ge 3$ and $r \cdot 2p(1-p)>1$ , then the threshold contact process persists for a long time, which correspond to chaotic behavior of the Boolean network. Unfortunately, we are only able to prove the persistence time is $\ge \exp(cn^{b(p)})$ with $b(p)>0$ when $r\cdot 2p(1-p)> 1$ , and $b(p)=1$ when $(r-1)\cdot 2p(1-p)>1$ . © 2011 Wiley Periodicals, Inc. Random Struct. Alg., 2011  相似文献   

4.
Let $\cal{C}$ be a class of probability distributions over a finite set Ω. A function $D : \Omega \mapsto\{0,1\}^{m}$ is a disperser for $\cal{C}$ with entropy threshold $k$ and error $\epsilon$ if for any distribution X in $\cal{C}$ such that X gives positive probability to at least $2^{k}$ elements we have that the distribution $D(X)$ gives positive probability to at least $(1-\epsilon)2^{m}$ elements. A long line of research is devoted to giving explicit (that is polynomial time computable) dispersers (and related objects called “extractors”) for various classes of distributions while trying to maximize m as a function of k. For several interesting classes of distributions there are explicit constructions in the literature of zero‐error dispersers with “small” output length m. In this paper we develop a general technique to improve the output length of zero‐error dispersers. This strategy works for several classes of sources and is inspired by a transformation that improves the output length of extractors (which was given by Shaltiel (CCC'06; Proceedings of the 21st Annual IEEE Conference on Computational Complexity, (2006) 46–60.) building on earlier work by Gabizon, Raz and Shaltiel (SIAM J Comput 36 (2006) 1072–1094). Our techniques are different than those of Shaltiel (CCC'06; Proceedings of the 21st Annual IEEE Conference on Computational Complexity (2006) 46–60) and in particular give non‐trivial results in the errorless case. Using our approach we construct improved zero‐error 2‐source dispersers. More precisely, we show that for any constant $\delta >0$ there is a constant $\eta >0$ such that for sufficiently large n there is a poly‐time computable function $D :\{0,1\}^{n}\times\{0,1\}^{n}\mapsto\{0,1\}^{\eta n}$ such that for every two independent distributions $X_1,X_2$ over $\{0,1\}^{n}$ each with support size at least $2^{\delta n}$ , the output distribution $D(X_1,X_2)$ has full support. This improves the output length of previous constructions by Barak, Kindler, Shaltiel, Sudakov and Wigderson (Proceedings of the 37th Annual ACM Symposium on Theory of Computing (2005) 1–10) and has applications in Ramsey theory and in improved constructions of certain data structures from the work of Fiat and Naor [SIAM J Comput 22 (1993)]. We also use our techniques to give explicit constructions of zero‐error dispersers for bit‐fixing sources and affine sources over polynomially large fields. These constructions improve the best known explicit constructions due to Rao (unpublished data) and Gabizon and Raz [Combinatorica 28 (2008)] and achieve $m=\Omega(k)$ for bit‐fixing sources and $m=k-o(k)$ for affine sources over polynomial size fields. © 2011 Wiley Periodicals, Inc. Random Struct. Alg., 2011  相似文献   

5.
In this work we investigate the existence of periodic solutions in t for the following problem: We employ elliptic regularization and monotone method. We consider $\mbox{\boldmath{$\Omega$}}\mbox{\boldmath{$\subset$}}{\mathbb{R}}^{{{n}}} \ (n\geqslant 1)$ an open bounded set that has regular boundary Γ and Q=Ω ×(0,T), T>0, a cylinder of ${\mathbb{R}}^{n+1}$ with lateral boundary Σ = Γ × (0,T). Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   

6.
Consider the focusing $\dot H^{1/2}$ ‐critical semilinear Schrödinger equation in $\font\open=msbm10 at 10pt\def\R{\hbox{\open R}}\R^3$ It admits an eight‐dimensional manifold of special solutions called ground state solitons. We exhibit a codimension‐1 critical real analytic manifold ${\cal N}$ of asymptotically stable solutions of (0.1) in a neighborhood of the soliton manifold. We then show that ${\cal N}$ is center‐stable, in the dynamical systems sense of Bates and Jones, and globally‐in‐time invariant. Solutions in ${\cal N}$ are asymptotically stable and separate into two asymptotically free parts that decouple in the limit—a soliton and radiation. Conversely, in a general setting, any solution that stays $\dot H^{1/2}$ ‐close to the soliton manifold for all time is in ${\cal N}$ . The proof uses the method of modulation. New elements include a different linearization and an endpoint Strichartz estimate for the time‐dependent linearized equation. The proof also uses the fact that the linearized Hamiltonian has no nonzero real eigenvalues or resonances. This has recently been established in the case treated here—of the focusing cubic NLS in $\font\open=msbm10 at 10pt\def\R{\hbox{\open R}}\R^3$ —by the work of Marzuola and Simpson and Costin, Huang, and Schlag. © 2012 Wiley Periodicals, Inc.  相似文献   

7.
In this paper we prove the optimal $C^{1,1}(B_{1/2})$ ‐regularity for a general obstacle‐type problem under the assumption that $f*N$ is $C^{1,1}(B_1)$ , where N is the Newtonian potential. This is the weakest assumption for which one can hope to get $C^{1,1}$ ‐regularity. As a by‐product of the $C^{1,1}$ ‐regularity we are able to prove that, under a standard thickness assumption on the zero set close to a free boundary point $x^0$ , the free boundary is locally a $C^1$ ‐graph close to $x^0$ provided f is Dini. This completely settles the question of the optimal regularity of this problem, which has been the focus of much attention during the last two decades. © 2012 Wiley Periodicals, Inc.  相似文献   

8.
We study random graphs, both G( n,p) and G( n,m), with random orientations on the edges. For three fixed distinct vertices s,a,b we study the correlation, in the combine probability space, of the events $\{a\to s\}$ and $\{s\to b\}$ . For G(n,p), we prove that there is a $pc = 1/2$ such that for a fixed $p < pc$ the correlation is negative for large enough n and for $p > pc$ the correlation is positive for large enough n. We conjecture that for a fixed $n \ge 27$ the correlation changes sign three times for three critical values of p. For G(n,m) it is similarly proved that, with $p=m/({{n}\atop {2}})$ , there is a critical pc that is the solution to a certain equation and approximately equal to 0.7993. A lemma, which computes the probability of non existence of any $\ell$ directed edges in G(n,m), is thought to be of independent interest. We present exact recursions to compute \input amssym $\Bbb{P}(a\to s)$ and \input amssym $\Bbb{P}(a\to s, s\to b)$ . We also briefly discuss the corresponding question in the quenched version of the problem. © 2011 Wiley Periodicals, Inc. Random Struct. Alg., 2011  相似文献   

9.
For the eigenvalues $( \lambda_{n}) _{n=1}^{\infty}$ of the Dirichlet Laplacian on a bounded convex domain $\font\open=msbm10 at 10pt\def\C{\hbox{\open C}}\Omega\subset{\C}$ , we find the sum of the series the regularized trace of the inverse of Dirichlet Laplacian. © 2011 Wiley Periodicals, Inc.  相似文献   

10.
For a finite projective plane , let denote the maximum number of classes in a partition of the point set, such that each line has at least two points in the same partition class. We prove that the best possible general estimate in terms of the order of projective planes is , which is tight apart from a multiplicative constant in the third term :
  • (1) As holds for every projective plane of order q.
  • (2) If q is a square, then the Galois plane of order q satisfies .
Our results asymptotically solve a ten‐year‐old open problem in the coloring theory of mixed hypergraphs, where is termed the upper chromatic number of . Further improvements on the upper bound (1) are presented for Galois planes and their subclasses. © 2007 Wiley Periodicals, Inc. J Combin Designs 16: 221–230, 2008  相似文献   

11.
Let consist of all simple graphs on 2k vertices and edges. For a simple graph G and a positive integer , let denote the number of proper vertex colorings of G in at most colors, and let . We prove that and is the only extremal graph. We also prove that as . © 2007 Wiley Periodicals, Inc. J Graph Theory 56: 135–148, 2007  相似文献   

12.
We study the cover time of random geometric graphs. Let $I(d)=[0,1]^{d}$ denote the unit torus in d dimensions. Let $D(x,r)$ denote the ball (disc) of radius r. Let $\Upsilon_d$ be the volume of the unit ball $D(0,1)$ in d dimensions. A random geometric graph $G=G(d,r,n)$ in d dimensions is defined as follows: Sample n points V independently and uniformly at random from $I(d)$ . For each point x draw a ball $D(x,r)$ of radius r about x. The vertex set $V(G)=V$ and the edge set $E(G)=\{\{v,w\}: w\ne v,\,w\in D(v,r)\}$ . Let $G(d,r,n),\,d\geq 3$ be a random geometric graph. Let $C_G$ denote the cover time of a simple random walk on G. Let $c>1$ be constant, and let $r=(c\log n/(\Upsilon_dn))^{1/d}$ . Then whp the cover time satisfies © 2010 Wiley Periodicals, Inc. Random Struct. Alg., 38, 324–349, 2011  相似文献   

13.
In this paper the equation $\font\open=msbm10 at 10pt\def\R{\hbox{\open R}} - \Delta u + a(x)u = |u|^{p - 1} u\;{\rm in }\;{\R}^N $ is considered, when N ≥ 2, p > 1, and $p < {{N + 2} \over {N - 2}}$ if N ≥ 3. Assuming that the potential a(x) is a positive function belonging to $\font\open=msbm10 at 10pt\def\R{\hbox{\open R}}L_{{\rm loc}}^{N/2} ({\R}^N )$ such that a(x) → a > 0 as |x|→∞ and satisfies slow decay assumptions but does not need to fulfill any symmetry property, the existence of infinitely many positive solutions, by purely variational methods, is proved. The shape of the solutions is described as is, and furthermore, their asymptotic behavior when $\font\open=msbm10 at 10pt\def\R{\hbox{\open R}}|a(x) - a_\infty |_{L_{{\rm loc}}^{N/2} ({\R}^N )} \to 0$ . © 2012 Wiley Periodicals, Inc.  相似文献   

14.
We consider the following nonlinear system derived from the SU(3) Chern‐Simons models on a torus Ω: where $\delta_p$ denotes the Dirac measure at $p\in\Omega$ . When $\{p_j^1\}_1^{N_1}= \{p_j^2\}_1^{N_2}$ , if we look for a solution with $u_1=u_2=u$ , then (0.1) is reduced to the Chern‐Simons‐Higgs equation: The existence of bubbling solutions to (0.1) has been a longstanding problem. In this paper, we prove the existence of such solutions such that $u_1\ne u_2$ even if $\{p_j^1\}_1^{N_1}=\{p_j^2\}_1^{N_2}$ . © 2012 Wiley Periodicals, Inc.  相似文献   

15.
We establish a global well‐posedness of mild solutions to the three‐dimensional, incompressible Navier‐Stokes equations if the initial data are in the space ${\cal{X}}^{-1}$ defined by \input amssym ${\cal{X}}^{‐1} = \{f \in {\cal{D}}^\prime(R^3): \int_{{\Bbb{R}}^3}|\xi|^{‐1}|\widehat{f}|d\xi < \infty\}$ and if the norms of the initial data in ${\cal{X}}^{-1}$ are bounded exactly by the viscosity coefficient μ. © 2010 Wiley Periodicals, Inc.  相似文献   

16.
The circular chromatic index of a graph G, written , is the minimum r permitting a function such that whenever e and are incident. Let □ , where □ denotes Cartesian product and H is an ‐regular graph of odd order, with (thus, G is s‐regular). We prove that , where is the minimum, over all bases of the cycle space of H, of the maximum length of a cycle in the basis. When and m is large, the lower bound is sharp. In particular, if , then □ , independent of m. © 2007 Wiley Periodicals, Inc. J Graph Theory 57: 7–18, 2008  相似文献   

17.
Consider two graphs, and , on the same vertex set V, with and having edges for . We give a simple algorithm that partitions V into sets A and B such that and . We also show, using a probabilistic method, that if and belong to certain classes of graphs, (for instance, if and both have a density of at least 2/, or if and are both regular of degree at most with n sufficiently large) then we can find a partition of V into sets A and B such that for . © 2007 Wiley Periodicals, Inc. J Graph Theory 57: 19–32, 2008  相似文献   

18.
Suppose we wish to recover a signal \input amssym $\font\abc=cmmib10\def\bi#1{\hbox{\abc#1}} {\bi x} \in {\Bbb C}^n$ from m intensity measurements of the form $\font\abc=cmmib10\def\bi#1{\hbox{\abc#1}} |\langle \bi x,\bi z_i \rangle|^2$ , $i = 1, 2, \ldots, m$ ; that is, from data in which phase information is missing. We prove that if the vectors $\font\abc=cmmib10\def\bi#1{\hbox{\abc#1}}{\bi z}_i$ are sampled independently and uniformly at random on the unit sphere, then the signal x can be recovered exactly (up to a global phase factor) by solving a convenient semidefinite program–‐a trace‐norm minimization problem; this holds with large probability provided that m is on the order of $n {\log n}$ , and without any assumption about the signal whatsoever. This novel result demonstrates that in some instances, the combinatorial phase retrieval problem can be solved by convex programming techniques. Finally, we also prove that our methodology is robust vis‐à‐vis additive noise. © 2012 Wiley Periodicals, Inc.  相似文献   

19.
The semiclassical (zero‐dispersion) limit of solutions $q=q(x,t,\epsilon)$ to the one‐dimensional focusing nonlinear Schrödinger equation (NLS) is studied in a scaling neighborhood D of a point of gradient catastrophe ($x_0,t_0$) . We consider a class of solutions, specified in the text, that decay as $|x| \rightarrow \infty$ . The neighborhood D contains the region of modulated plane wave (with rapid phase oscillations), as well as the region of fast‐amplitude oscillations (spikes). In this paper we establish the following universal behaviors of the NLS solutions q near the point of gradient catastrophe: (i) each spike has height $3|q{_0}(x_0,t_0)|$ and uniform shape of the rational breather solution to the NLS, scaled to the size ${\cal O}(\epsilon)$ ; (ii) the location of the spikes is determined by the poles of the tritronquée solution of the Painlevé I (P1) equation through an explicit map between D and a region of the Painlevé independent variable; (iii) if $(x,t)\in D$ but lies away from the spikes, the asymptotics of the NLS solution $q(x,t, \epsilon)$ is given by the plane wave approximation $q_0(x,t, \epsilon)$ , with the correction term being expressed in terms of the tritronquée solution of P1. The relation with the conjecture of Dubrovin, Grava, and Klein about the behavior of solutions to the focusing NLS near a point of gradient catastrophe is discussed. We conjecture that the P1 hierarchy occurs at higher degenerate catastrophe points and that the amplitudes of the spikes are odd multiples of the amplitude at the corresponding catastrophe point. Our technique is based on the nonlinear steepest‐descent method for matrix Riemann‐Hilbert problems and discrete Schlesinger isomonodromic transformations. © 2013 Wiley Periodicals, Inc.  相似文献   

20.
Given a graph G, the size‐Ramsey number $\hat r(G)$ is the minimum number m for which there exists a graph F on m edges such that any two‐coloring of the edges of F admits a monochromatic copy of G. In 1983, J. Beck introduced an invariant β(·) for trees and showed that $\hat r(T) = \Omega (\beta (T))$ . Moreover he conjectured that $\hat r(T) = \Theta (\beta (T))$ . We settle this conjecture by providing a family of graphs and an embedding scheme for trees. © 2011 Wiley Periodicals, Inc. Random Struct. Alg., 2011  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号