首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
We describe the use of capillary zone electrophoresis (CZE) for the qualitative and quantitative determination of major alkaloids (i.e., thebaine, codeine, morphine, papavarine and narcotine) in gum opium involving the analysis of alkaloids without derivatization or purification. Three extractions with 2.5% w/v aqueous acetic acid quantitatively extracted major alkaloids. The separation was carried out by CZE using a 7:3 mixture of methanol and sodium acetate (100 mM, pH 3.1) at a potential of 15 kV, with UV detection at 224 nm. Spiking of pure reference alkaloid standards in the opium extract was used for peak identification. The influences of buffer composition, pH and voltage on the separation of alkaloids were studied. The detection limit of each alkaloid dissolved in methanol was found to be 850 ng/mL (morphine), 450 ng/mL (thebaine), 500 ng/mL (codeine), 550 ng/mL (papaverine), and 500 ng/mL (narcotine) at an injection pressure of 300 mbar (injection volume, 4 nL) with a signal-to-noise ratio of 3:1. The external standard method was used for the quantification of alkaloids. The calibration plot was based on linear regression analysis. The relative standard deviation (RSD) for peak area and migration time was in the range of 1.03-3.56% and 0.34-0.69%, respectively. Percentage compositions (g%) of opium alkaloids in five gum opium samples were found to be in the range of 14.45-15.95 (morphine), 2.0-3.45 (codeine), 1.32-2.73 (thebaine), 0.92-2.37 (papavarine), and 3.85-5.77 (narcotine). The method developed is suitable for the routine analysis of major gum opium alkaloids in samples of forensic importance.  相似文献   

2.
A rapid and cost‐effective method based on microwave‐assisted extraction followed by capillary electrophoresis was developed for simultaneous quantification of seven alkaloids in Corydalis decumbens for the first time. The main parameters affecting microwave‐assisted extraction and capillary electrophoresis separation were investigated and optimized. The optimal microwave‐assisted extraction was performed at 40°C for 5 min using methanol/water (90:10, v/v) as the extracting solvent. Electrophoretic separation was achieved within 15 min using an uncoated fused‐silica capillary (50 μm internal diameter and 27.7 cm effective length) and a 500 mM Tris buffer containing 45% v/v methanol (titrated to pH* 2.86 with H3PO4). The developed method was successfully applied to the quantification of seven alkaloids in Corydalis decumbens obtained from different regions of China. The combination of microwave‐assisted extraction with capillary electrophoresis was an effective method for the rapid analysis of the alkaloids in Corydalis decumbens .  相似文献   

3.
A novel and rapid solventless microwave‐assisted extraction coupled with low‐density solvent‐based in‐tube ultrasound‐assisted emulsification microextraction has been developed for the efficient determination of nine organophosphorus pesticides in soils by GC analysis with microelectron capture detection. A specially designed, homemade glass tube inbuilt with a scaled capillary tube was used as an extraction device to collect and measure the separated extractant phase easily. Parameters affecting the efficiencies of the developed method were thoroughly investigated. From experimental results, the following conditions were selected for the extraction of organophosphorus pesticides from 1.0 g of soil sample to 5 mL of aqueous solution under 226 W of microwave irradiation for 2.5 min followed by ultrasound‐assisted emulsification microextraction with 20 μL toluene for 30 s and then centrifugation at 3200 rpm for 3 min. Detections were linear in the range of 0.25–10 ng/g with detection limits between 0.04 and 0.13 ng/g for all target analytes. The applicability of the method to real samples was assessed on agricultural contaminated soils and the recoveries ranged between 91.4 and 101.3%. Compared to other methods, the present method was shown to be highly competitive in terms of sensitivity, cost, eco‐friendly nature, and analysis speed.  相似文献   

4.
An ionic liquid‐based ultrasound‐assisted extraction method has been developed for the effective extraction of fangchinoline and tetrandrine from Stephaniae tetrandrae. The effects of some ultrasound‐assisted extraction parameters including the concentration of [BMIM][BF4], pH, ultrasonic power and time were investigated to optimize the ultrasound‐assisted extraction conditions. Compared to the regular ultrasound‐assisted extraction and traditional refluent extraction, the proposed [BMIM][BF4]‐based ultrasound‐assisted extraction offered shorter extraction times (from 6 h to 40 min) and remarkable higher efficiencies (approximately 30% improved), which supported the suitability of the proposed approach. In addition, the proposed approach was confirmed by the good correlation coefficient (R2), recovery and reproducibility (RSD, n = 5), which were in the range of 0.9992–0.9995, 85.5–101.1%, and 1.87–4.33%, respectively.  相似文献   

5.
The hydrophobic ionic liquid of [BMIM][PF6] was successfully used for the ultrasound‐assisted extraction of hydrophobic magnolol and honokiol from cortex Magnoliae officinalis. To obtain the best extraction efficiencies, some ultrasonic parameters including the concentration of [BMIM][PF6], pH, ultrasonic power and ultrasonic time were evaluated. The results obtained indicated that the [BMIM][PF6]‐based ultrasound‐assisted extraction efficiencies of magnolol and honokiol were greater than those of the [BMIM][BF4]‐based ultrasound‐assisted extraction (from 48.6 to 45.9%) and the traditional ethanol reflux extraction (from 16.2 to 13.3%). Furthermore, the proposed extraction method is validated by the recovery, correlation coefficient (R2) and reproducibility (RSD, n=5), which were 90.8–102.6, 0.9992–0.9998, and 1.6–5.4%, respectively.  相似文献   

6.
A fast and an efficient ultrasound‐assisted extraction technique using a lower density extraction solvent than water was developed for the trace‐level determination of tebuconazole in garlic, soil and water samples followed by capillary gas chromatography combined with nitrogen–phosphorous selective detector (GC–NPD). In this approach, ultrasound radiation was applied to accelerate the emulsification of the ethyl acetate in aqueous samples to enhance the extraction efficiency of tebuconazole without requiring extra partitioning or cleaning, and the use of capillary GC–NPD was a more sensitive detection technique for organonitrogen pesticides. The experimental results indicate an excellent linear relationship between peak area and concentration obtained in the range 1–50 μg/kg or μg/L. The limit of detection (S/N, 3 ± 0.5) and limit of quantification (S/N, 7.5 ± 2.5) were obtained in the range 0.2–3 and 1–10 μg/kg or μg/L. Good spiked recoveries were achieved from ranges 95.55–101.26%, 96.28–99.33% and 95.04–105.15% in garlic, Nanivaliyal soil and Par River water, respectively, at levels 5 and 20 μg/kg or μg/L, and the method precision (% RSD) was ≤5%. Our results demonstrate that the proposed technique is a viable alternative for the determination of tebuconazole in complex samples.  相似文献   

7.
A simple and reliable ultrasound‐assisted solid‐phase dispersion extraction coupled with ion chromatography was developed for the determination of aminophenols and phenol. The highly viscous hair colorant was dispersed in solvents using anhydrous sodium sulfite having dual functions of dispersant and antioxidant. The use of anhydrous sodium sulfite did not change the sample volume because it could completely dissolve in solution after matrix dispersion. The extraction and cleanup were combined in one single step for simplifying operation. The extraction process could be rapidly accomplished within 9 min with high sample throughput under the synergistic effects of vibration, ultrasound, and heating. Satisfactory linearity was observed with correlation coefficients higher than 0.9992, and the limits of detection varied from 0.02 to 0.09 mg/L. The applicability of the proposed method was demonstrated by measuring the concentrations of aminophenols and phenol in 32 different commercial hair color products. The recoveries ranged from 86.4–101.2% with the relative standard deviations in the range of 0.52–4.3%. The method offers an attractive alternative for the analysis of trace phenols in complex matrices.  相似文献   

8.
Zhou S  Tan J  Chen Q  Lin X  Lü H  Xie Z 《Journal of chromatography. A》2010,1217(52):8346-8351
A novel open tubular (OT) column covalently modified with hydrophilic polysaccharide, carboxymethylchitosan (CMC) as stationary phase has been developed, and employed for the separations of basic proteins and opium alkaloids by capillary electrochromatography (CEC). With the procedures including the silanization of 3-aminopropyltrimethoxysilane (APTS) and the combination of glutaraldehyde with amino-silylated silica surface and CMC, CMC was covalently bonded on the capillary inner wall and exhibited a remarkable tolerance and chemical stability against 0.1 mol/L HCl, 0.1 mol/L NaOH or some organic solvents. By varying the pH values of running buffer, a cathodic or anodic EOF could be gained in CMC modified column. With anodic EOF mode (pH<4.3), favorable separations of basic proteins (trypsin, ribonuclease A, lysozyme and cytochrome C) were successfully achieved with high column efficiencies ranging from 97,000 to 182,000 plates/m, and the undesired adsorptions of basic proteins on the inter-wall of capillary could be avoided. Good repeatability was gained with RSD of the migration time less than 1.3% for run-to-run (n=5) and less than 3.2% for day-to-day (n=3), RSD of peak area was less than 5.6% for run-to-run (n=5) and less than 8.8% for day-to-day (n=3). With cathodic EOF mode (pH>4.3), four opium alkaloids were also baseline separated in phosphate buffer (50 mmol/L, pH 6.0) with column efficiencies ranging from 92,000 to 132,000 plates/m. CMC-bonded OT capillary column might be used as an alternative medium for the further analysis of basic proteins and alkaline analytes.  相似文献   

9.
A novel and reliable method based on microwave‐assisted extraction (MAE) followed by HPLC‐UV was developed and validated for the simultaneous quantification of six pharmacologically important oxoisoaporphine alkaloids in the total plants of Menispermum dauricum DC. The optimal MAE extraction condition was performed at 60°C for 11 min with ethanol–water (70:30, v/v) as the extracting solvent, and the solvent to solid ratio was 20:1. Chromatographic separation was achieved on a reversed‐phase YMC C18 column (250 × 4.6 mm, i.d., 5 µm) with a gradient mobile phase consisting of A (1% aqueous formic acid) and B (acetonitrile containing 1% formic acid) at a flow rate of 1.5 mL/min. The detection wavelength was set at 422 nm. Excellent linearity over the investigated concentration ranges was observed with values of r >0.999 for all analytes. The method developed was validated with acceptable sensitivity, intra‐ and inter‐day precision and extraction recoveries. It was successfully applied to the determination of six alkaloids in Menispermum dauricum DC from different sources and different parts of Menispermum dauricum DC. The results obtained indicated that the method is suitable for the quality control of Menispermum dauricum DC. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   

10.
Surfactant‐assisted electromembrane extraction coupled with cyclodextrin‐modified capillary electrophoresis was developed for the separation and determination of Tranylcypromine enantiomers in biological samples. This combination would provide a new strategy for selective and sensitive determination of target analytes. The addition of surfactant in the donor solution improved the analyte transport into the lumen of hollow fiber that resulted in an enhancement in the analytes migration into acceptor solution. Optimization of the variables, affecting proposed method, was carried out and best results were achieved with a 175 V potential as driving force of the electromembrane extraction, 2‐nitrophenyloctylether as the supported liquid membrane, donor solution containing 0.2 mM Triton X‐100 with pH 3 and 0.1 M HCl for acceptor solution. Then, the extract was analyzed using cyclodextrin‐modified capillary electrophoresis method for separation of Tranylcypromine enantiomers. The best results were obtained with a phosphate running buffer (100 mM, pH 2.0) containing 7% w/v hydroxypropyl‐α‐cyclodextrin. Under the optimum conditions, a low limit of detection (3.03 ng/mL), good linearity (R2 > 0.9953), and relative standard deviations below 4.0% (n = 5) were obtained. Finally, this procedure was applied to determine the concentration of Tranylcypromine enantiomers in urine samples with satisfactory results.  相似文献   

11.
Cat's claw is a large woody vine with hook‐like thorns, and has been traditionally used to treat inflammatory disorders in South and Central America. In this study, a rapid, validated high‐performance liquid chromatographic (HPLC) method using a silica monolithic column was developed for the simultaneous determination of oxindole alkaloids, namely rhynchophylline, pteropodine, isomitraphylline and isopteropodine, in cat's claw. The ionic liquid‐based microwave‐assisted extraction (ILMAE), considered as an environmentally friendly and powerful tool, was first applied in the extraction of oxindole alkaloids. To optimize the HPLC method, the stationary phases, pH values of mobile phase and flow rates were investigated. The validated HPLC method using a Monolithic RP18e column (100 × 4.6 mm) enables these analytes to be separated almost twice as fast as with a conventional particulate column (~16 vs ~30 min) with limits of quantification and detection of 0.5 and 0.15 μg/mL, respectively. The ILMAE conditions were optimized by the Taguchi orthogonal array design. In comparison with conventional water boiling extraction, ILMAE offers almost four times higher yields within an extremely short extraction time. The developed HPLC coupled with ILMAE method could be efficient and practical for rapid determination of oxindole alkaloids in cat's claw.  相似文献   

12.
An ultrasound‐microwave synergistic extraction coupled to headspace solid‐phase microextraction was first employed to determine the volatile components in tobacco samples. The method combined the advantages of ultrasound, microwave, and headspace solid‐phase microextraction. The extraction, separation, and enrichment were performed in a single step, which could greatly simplify the operation and reduce the whole pretreatment time. In the developed method, several experimental parameters, such as fiber type, ultrasound power, and irradiation time, were optimized to improve sampling efficiency. Under the optimal conditions, there were 37, 36, 34, and 36 components identified in tobacco from Guizhou, Hunan, Yunnan, and Zimbabwe, respectively, including esters, heterocycles, alkanes, ketones, terpenoids, acids, phenols, and alcohols. The compound types were roughly the same while the contents were varied from different origins due to the disparity of their growing conditions, such as soil, water, and climate. In addition, the ultrasound‐microwave synergistic extraction coupled to headspace solid‐phase microextraction method was compared with the microwave‐assisted extraction coupled to headspace solid‐phase microextraction and headspace solid‐phase microextraction methods. More types of volatile components were obtained by using the ultrasound‐microwave synergistic extraction coupled to headspace solid‐phase microextraction method, moreover, the contents were high. The results indicated that the ultrasound‐microwave synergistic extraction coupled to headspace solid‐phase microextraction technique was a simple, time‐saving and highly efficient approach, which was especially suitable for analysis of the volatile components in tobacco.  相似文献   

13.
Summary A reversed phase HPLC method for the separation of the five major alkaloids fromPapaver somniferum L., morphine, codeine, thebaine, papaverine and noscapine, has been developed and validated. By use of a basedeactivated silica-based stationary phase excellent peak shape was achieved for each substance. The five alkaloids were quantified by internal standardization within 20 min and with good precision. The method is applicable to opium and to poppy straw.  相似文献   

14.
A novel and rapid ultrasound‐ and salt‐assisted liquid–liquid extraction coupled with high‐performance liquid chromatography has been optimized by response surface methodology for the determination of oleuropein from olive leaves. Box–Behnken design was used for optimizing the main parameters including ultrasound time (A), pH (B), salt concentration (C), and volume of miscible organic solvent (D). In this technique, a mixture of plant sample and extraction solvent was subjected to ultrasound waves. After ultrasound‐assisted extraction, phase separation was performed by the addition of salt to the liquid phase. The optimal conditions for the highest extraction yield of oleuropein were ultrasound time, 30 min; volume of organic solvent, 2.5 mL; salt concentration, 25% w/v; and sample pH, 4. Experimental data were fitted with a quadratic model. Analysis of variance results show that BC interaction, A2, B2, C2, and D2 are significant model terms. Unlike the conventional extraction methods for plant extracts, no evaporation and reconstitution operations were needed in the proposed technique.  相似文献   

15.
Green and enhanced extraction of bioactive ingredients from medicinal plants has become a hot research field, and deep eutectic solvents have been considered as a novel kind of sustainable solvents in the extraction process. In this study, hydrogen bond acceptor (choline chloride, etc.) and hydrogen bond donor (l ‐malic acid, etc.) were used to prepare different kinds of deep eutectic solvents to extract coumarins from Cortex Fraxini. The extraction conditions, including the composition and moisture content of deep eutectic solvents, extraction time, and liquid‐solid ratio, were systematically optimized basing on the extraction yield of coumarins. To further investigate the extraction mechanism, Fourier transform infrared spectroscopy was performed, and the microstructures of Cortex Fraxini powders were observed before and after extraction using scanning electron microscope. Results showed that the novel ultrasound‐assisted extraction with conditions of deep eutectic solvent containing betaine/glycerin (1:3), aqueous solution (20%), solid‐liquid ratio (15 mg/mL), and extraction time (30 min) exhibited the best extraction yields for the four target coumarins and much better extraction efficiency than with conventional solvent extractions. This suggests that the new ultrasound‐assisted deep eutectic solvent extraction could be used as a green and high‐efficient approach for extraction of the main coumarins from Cortex Fraxini.  相似文献   

16.
Although aflatoxins contamination in feedstuff is a well‐known problem, and hence these residues are controlled in poultry products, there is scarce information regarding the presence of these toxic substances in aquaculture fish, facilities that use several feedstuff for fish breeding. A simple, rapid, and sensitive method has been therefore developed for aflatoxins (B1, B2, G1, and G2) assessment in aquaculture products by combining ultrasound probe‐assisted extraction and vortex‐assisted liquid–liquid microextraction as a sample pretreatment, and high‐performance liquid chromatography‐tandem mass spectrometry as a separation/detection system. Aflatoxins were extracted from fish flesh/liver with a 60:40 acetonitrile/aqueous phosphate buffer (pH 7.0) mixture before preconcentration and clean‐up by vortex‐assisted liquid–liquid microextraction under the following optimized conditions: 5.0 mL of fish extract at pH 7.0 and NaCl at 0.5% (w/v), 400 μL of chloroform as extracting solvent, and vortex shaking at 2000 rpm for 1 min. The proposed method is shown to be precise and accurate, and the limit of quantitations (from 0.20 to 1.10 μg kg?1) were lower than the value established by the European Commission Regulation for aflatoxins in foodstuff. Results have shown that fish flesh is free of aflatoxins, but aflatoxins B2 and G1 were quantified in fish liver.  相似文献   

17.
The enantioseparation of warfarin and its main metabolite has been achieved using several cyclodextrin types and buffers at different pH, including conditions that have not been attempted so far. Methyl‐β‐cyclodextrin, highly sulfated‐β‐cyclodextrin and highly sulfated‐γ‐cyclodextrin were the most efficient chiral selectors. The pH range, within which particular cyclodextrins support chiral separation, has been approximately determined for the first time. By shortening the effective capillary length to 10 cm, the time of analysis has been vastly reduced <2 min. Hence, baseline separations of warfarin and 7‐hydroxywarfarin enantiomers have been achieved in times unreported for those species until now. The established conditions are promising for the further development of new highly selective and fast methods involving warfarin, its derivatives, as well as the same cyclodextrin types.  相似文献   

18.
Here in, magnetic nanoparticles combined with graphene oxide adsorbent were fabricated via a microwave‐assisted synthesis method, and used in the solid‐phase extraction of three phenolic compounds (phenol, 4‐nitrophenol, and m‐methylphenol) in environmental water samples. Various instrumental methods were employed to characterize the magnetic nanoparticles modified with graphene oxide. The influence of experimental parameters, such as desorption conditions, amount of adsorbent, extraction time, and pH, on the extraction efficiency was investigated. Owing to the high surface area and excellent adsorption capacity of the prepared material, satisfactory extraction was achieved. Under optimum conditions, a linear response was observed in the concentration range of 1.000–100.0 μg/L for phenol, 0.996–99.6 μg/L for 4‐nitrophenol, and 0.975–97.5 μg/L for m‐methylphenol, with correlation coefficients in the range of 0.9995–0.9997. The limit of detection (signal‐to‐noise ratio of 3) of the method varied between 0.5 and 0.8 μg/L. The relative standard deviations were <5.2%. The recovery percentages of the method were in the range of 89.1–104.3%. The results indicate that the graphene oxide‐modified magnetic nanoparticles possess high adsorptive abilities toward phenolic compounds in environmental water samples.  相似文献   

19.
In this paper, for the first time, surfactant‐assisted electromembrane extraction coupled with capillary electrophoresis with UV detector was introduced for the extraction of acidic drugs from biological fluids. In this technique, in the presence of the nonionic surfactant in the donor phase, tendency of analyte ions into the supported liquid membrane (SLM) was increased. Naproxen and diclofenac were selected as model acidic drugs. In order to obtain the best extraction efficiency, several factors influencing the extraction efficiency were investigated. Optimal extractions were accomplished with 1‐octanol as the SLM, 15 Volt dc potential as the driving force, pH 12 in acceptor solution, and 0.2 mmol/L Triton X‐100 with pH 7.4 in donor solution. Equilibrium extraction conditions were obtained after 15 min of operation where the whole assembly agitated at 1000 rpm. Under the optimized conditions, preconcentration factors in the range of 176–184 and recoveries in the range of 88–92% were obtained. The applied method offers acceptable linearity with correlation coefficients higher than 0.9992. Limits of detection of 1.51 ng/mL and 2.42 ng/mL were obtained for naproxen and diclofenac, respectively. Finally, the developed method was successfully applied for the determination of naproxen and diclofenac in different matrices including plasma and urine samples.  相似文献   

20.
A rapid and simple quantitative method for preconcentration and determination of haloperidol in biological samples was developed using ultrasound‐assisted emulsification microextraction, based on the solidification of floating organic droplet combined with HPLC‐DAD. The effects of several factors were investigated. A total of 30 μL of 1‐undecanol as an extraction solvent was injected slowly into a glass‐centrifuge tube containing 4 mL alkaline sample solution that was located inside the ultrasonic water bath. The formed emulsion was centrifuged and the fine droplets of solvent were floated at the top of the test tube, then it was cooled in an ice bath and the solidified solvent was transferred into a conical vial, after melt, the analysis of the extract was carried out by HPLC. Under the optimal conditions, the extraction efficiencies were more than 90% and the preconcentration factors were obtained between 119–122. The LOQs were obtained between 4–8 μg/L and the calibration curves were linear within the range of 4–1000 μg/L. Finally this method was applied to the determination of haloperidol in plasma and urine samples in the range of μg/L and satisfactory results were achieved (RSDs <7%).  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号