首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
A simple and robust solvent suppression technique that enables acquisition of high‐quality 1D 1H nuclear magnetic resonance (NMR) spectra of alcoholic beverages on cryoprobe instruments was developed and applied to acquire NMR spectra of Scotch Whisky. The method uses 3 channels to suppress signals of water and ethanol, including those of 13C satellites of ethanol. It is executed in automation allowing high throughput investigations of alcoholic beverages. On the basis of the well‐established 1D nuclear Overhauser spectroscopy (NOESY) solvent suppression technique, this method suppresses the solvent at the beginning of the pulse sequence, producing pure phase signals minimally affected by the relaxation. The developed solvent suppression procedure was integrated into several homocorrelated and heterocorrelated 2D NMR experiments, including 2D correlation spectroscopy (COSY), 2D total correlation spectroscopy (TOCSY), 2D band‐selective TOCSY, 2D J‐resolved spectroscopy, 2D 1H, 13C heteronuclear single‐quantum correlation spectroscopy (HSQC), 2D 1H, 13C HSQC‐TOCSY, and 2D 1H, 13C heteronuclear multiple‐bond correlation spectroscopy (HMBC). A 1D chemical‐shift‐selective TOCSY experiments was also modified. The wealth of information obtained by these experiments will assist in NMR structure elucidation of Scotch Whisky congeners and generally the composition of alcoholic beverages at the molecular level.  相似文献   

2.
A central problem in the emerging field of metabolomics is how to identify the compounds comprising a chemical mixture of biological origin. NMR spectroscopy can greatly assist in this identification process, by means of multi-dimensional correlation spectroscopy, particularly total correlation spectroscopy (TOCSY). This Communication demonstrates how non-negative matrix factorization (NMF) provides an efficient means of data reduction and clustering of TOCSY spectra for the identification of unique traces representing the NMR spectra of individual compounds. The method is applied to a metabolic mixture whose compounds could be unambiguously identified by peak matching of NMF components against the BMRB metabolomics database.  相似文献   

3.
Modern applications of 2D NMR spectroscopy to diagnostic screening, metabolomics, quality control, and other high‐throughput applications are often limited by the time‐consuming sampling requirements along the indirect time domain t 1. 2D total correlation spectroscopy (TOCSY) provides unique spin connectivity information for the analysis of a large number of compounds in complex mixtures, but standard methods typically require >100 t 1 increments for an accurate spectral reconstruction, rendering these experiments ineffective for high‐throughput applications. For a complex metabolite mixture it is demonstrated that absolute minimal sampling (AMS), based on direct fitting of resonance frequencies and amplitudes in the time domain, yields an accurate spectral reconstruction of TOCSY spectra using as few as 16 t 1 points. This permits the rapid collection of homonuclear 2D NMR experiments at high resolution with measurement times that previously were only the realm of 1D experiments.  相似文献   

4.
Isomeric mixtures from synthetic or natural origins can pose fundamental challenges for their chromatographic separation and spectroscopic identification. A novel 1D selective NMR experiment, chemical shift selective filter (CSSF)‐TOCSY‐INEPT, is presented that allows the extraction of 13C NMR subspectra of discrete isomers in complex mixtures without physical separation. This is achieved via CSS excitation of proton signals in the 1H NMR mixture spectrum, propagation of the selectivity by polarization transfer within coupled 1H spins, and subsequent relaying of the magnetization from 1H to 13C by direct INEPT transfer to generate 13C NMR subspectra. Simple consolidation of the subspectra yields 13C NMR spectra for individual isomers. Alternatively, CSSF‐INEPT with heteronuclear long‐range transfer can correlate the isolated networks of coupled spins and therefore facilitate the reconstruction of the 13C NMR spectra for isomers containing multiple spin systems. A proof‐of‐principle validation of the CSSF‐TOCSY‐INEPT experiment is demonstrated on three mixtures with different spectral and structural complexities. The results show that CSSF‐TOCSY‐INEPT is a versatile, powerful tool for deconvoluting isomeric mixtures within the NMR tube with unprecedented resolution and offers unique, unambiguous spectral information for structure elucidation. Copyright © 2014 John Wiley & Sons, Ltd.  相似文献   

5.
In this study, we propose F(2)-selective 2D NMR spectroscopy as an effective method to obtain high-quality spectra of minor components in complex foodstuffs. Selective excitation along the F(2) axis overcame the problems occurring in the conventional F(1)-selective 2D NMR spectroscopy. The technique was successfully applied to mango juice to provide high-quality TOCSY, DQF-COSY, and NOESY spectra of the minor components for the assignment of their signals. In addition, high-quality TOCSY spectra were obtained for the minor components of Japanese sake and honey. These results indicate that F(2)-selective 2D NMR spectroscopy will be useful for the non-destructive analysis of various foods.  相似文献   

6.
Combined verification using 1‐D proton and HSQC has been proved to be quite successful; the acquisition time of HSQC spectra, however, can be limiting in its high‐throughput applications. The replacement with Hadamard HSQC can significantly enhance the throughput. We hereby propose a protocol to optimize the grouping of the predicted carbon chemical shifts from the proposed structure and the associated Hadamard frequencies and bandwidths. The resulting Hadamard HSQC spectra compare favorably with their Fourier‐transformed counterparts, and have demonstrated to perform equivalently in terms of combined verification, but with several fold enhancement in throughput, as illustrated for 21 commercial available molecules and 16 prototypical drug compounds. Further improvement of the verification accuracy can be achieved by the cross validation from Hadamard TOCSY, which can be acquired without much sacrifice in throughput. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   

7.
A method is presented for the deconvolution of the NMR spectrum of a chemical mixture without requiring physical separation of its components. The method, which is termed "Demix", is based on a principal component analysis of a series of one-dimensional (1D) spectra that are statistically modulated during preparation and TOCSY mixing periods. The largest principal components correspond to the 1D NMR spectra of the scalar J-coupled spin networks of the individual components of the mixture. The method is demonstrated for aqueous mixtures of the amino acids Glu, Leu, Lys, and Val.  相似文献   

8.
The compressed sensing NMR (CS‐NMR) is an approach to processing of nonuniformly sampled NMR data. Its idea is to introduce minimal lp‐norm (0 < p ≤ 1) constraint to a penalty function used in a reconstruction algorithm. Here, we demonstrate that 2D CS‐NMR spectra allow the full spectral assignment of near‐symmetric β‐cyclodextrin derivatives (mono‐modified at the C6 position). The application of CS‐NMR ensures experimental time saving and the resolution improvement, necessary because of very low chemical shift dispersion. In the overnight experimental time, the set of properly resolved 2D NMR spectra required for the unambiguous assignment of mono(6‐deoxy‐6‐(1‐1,2,3‐triazo‐4‐yl)‐1‐propane‐3‐O‐(phenyl)) β‐cyclodextrin was obtained. The highly resolved HSQC spectrum was reconstructed from 5.12% of the data. Moreover, reconstructed 2D HSQC–TOCSY spectrum yielded information about the correlations within one sugar unit, and 2D HSQC–NOESY technique allowed the sequential assignment of the glucosidic units. Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   

9.
Unambiguous identification of individual metabolites present in complex mixtures such as biofluids constitutes a crucial prerequisite for quantitative metabolomics, toward better understanding of biochemical processes in living systems. Increasing the dimensionality of a given NMR correlation experiment is the natural solution for resolving spectral overlap. However, in the context of metabolites, natural abundance acquisition of 1H and 13C NMR data virtually excludes the use of higher dimensional NMR experiments (3D, 4D, etc.) that would require unrealistically long acquisition times. Here, we introduce projection NMR techniques for studies of complex mixtures, and we show how discrete sets of projection spectra from higher dimensional NMR experiments are obtained in a reasonable time frame, in order to capture essential information necessary to resolve assignment ambiguities caused by signal overlap in conventional 2D NMR spectra. We determine optimal projection angles where given metabolite resonances will have the least overlap, to obtain distinct metabolite assignment in complex mixtures. The method is demonstrated for a model mixture composition made of ornithine, putrescine and arginine for which acquisition of a single 2D projection of a 3D 1H–13C TOCSY‐HSQC spectrum allows to disentangle the metabolite signals and to access to complete profiling of this model mixture in the targeted 2D projection plane. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   

10.
Artifacts observed in the indirect covariance NMR spectrum of HSQC‐TOCSY data have recently been analyzed and a method for their elimination proposed. More recently, unsymmetrical covariance processing has been applied HSQC and HMBC spectral data to afford long‐range carbon‐carbon correlation information equivalent to that obtained from n, 1‐, 1, n‐ and m,n‐ADEQUATE spectra. We now wish to describe the results obtained through the application of unsymmetrical covariance processing of HSQC and COSY or TOCSY data, which affords the equivalent of HSQC‐COSY and HSQC‐TOCSY data in a fraction of the time required to record these spectra directly and with considerably higher sensitivity.  相似文献   

11.
Recent reports have demonstrated the unsymmetrical indirect covariance combination of discretely acquired 2D NMR experiments into spectra that provide an alternative means of accessing the information content of these spectra. The method can be thought of as being analogous to the Fourier transform conversion of time domain data into the more readily interpreted frequency domain. Hyphenated 2D‐NMR spectra such as GHSQC‐TOCSY, when available, provide an investigator with the means of sorting proton‐proton homonuclear connectivity networks as a function of the 13C chemical shift of the carbon directly bound to the proton from which propagation begins. Long‐range heteronuclear chemical shift correlation experiments establish proton‐carbon correlations via heteronuclear coupling pathways, most commonly across three bonds (3JCH), but in more general terms across two (2JCH) to four bonds (4JCH). In many instances 3JCH correlations dominate GHMBC spectra. We demonstrate in this report the improved visualization of 2JCH and 4JCH correlations through the unsymmetrical indirect covariance processing of GHSQC‐TOCSY and GHMBC 2D spectra.  相似文献   

12.
Precise assignments of 1H atomic sites and establishment of their through‐bond COSY or TOCSY connectivity are crucial for molecular structural characterization by using 1H NMR spectroscopy. However, this exercise is often hampered by signal overlap, primarily because of 1H–1H scalar coupling multiplets, even at typical high magnetic fields. The recent developments in homodecoupling strategies for effectively suppressing the coupling multiplets into nice singlets (pure‐shift), particularly, Morris's advanced broadband pure‐shift yielded by chirp excitation (PSYCHE) decoupling and ultrahigh resolution PSYCHE‐TOCSY schemes, have shown new possibilities for unambiguous structural elucidation of complex organic molecules. The superior broadband PSYCHE‐TOCSY exhibits enhanced performance over the earlier TOCSY methods, which however warrants prolonged experimental times due to the requirement of large number of dwell increments along the indirect dimension. Herein, we present fast and band‐selective analog of the broadband PSYCHE‐TOCSY, which is useful for analyzing complex organic molecules that exhibit characteristic yet crowded spectral regions. The simple pulse scheme relies on band‐selective excitation (BSE) followed by PSYCHE homodecoupling in the indirect dimension. The BSE‐PSYCHE‐TOCSY has been exemplified for Estradiol and a complex carbohydrate mixture comprised of six constituents of closely comparable molecular weights. The experimental times are greatly reduced viz., ~20 fold for Estradiol and ~10 fold for carbohydrate mixture, with respect to the broadband PSYCHE‐TOCSY. Furthermore, unlike the earlier homonuclear band‐selective decoupling, the BSE‐PSYCHE‐decoupling provides fully decoupled pure‐shift spectra for all the individual chemical sites within the excited band. The BSE‐PSYCHE‐TOCSY is expected to have significant potential for quick screening of complex organic molecules and mixtures at ultrahigh resolution. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   

13.
The importance of Hadamard encoding pulses in one‐dimensional pure shift yielded by the chirp excitation version of selective total correlation spectroscopy (1D PSYCHE–TOCSY) experiments is discussed for chemical‐shift analysis of complex natural products at ultrahigh resolution. Herein, we adapted Hn Hadamard matrices to 1D PSYCHE–TOCSY and observed an overall circa square root of n‐fold enhancement in the signal‐to‐noise (S/N) ratio when compared to conventional 1D PSYCHE–TOCSY recorded by refocusing only one spin at a time. This enhancement in S/N facilitates the observation of very weak long‐range chemical‐shift correlations from Hadamard‐encoded PSYCHE–TOCSY (HE–PSYCHE–TOCSY). The proposed method will have a significant impact on structure determination of complex isolated/ synthetic natural products.  相似文献   

14.
Modern applications of 2D NMR spectroscopy to diagnostic screening, metabolomics, quality control, and other high-throughput applications are often limited by the time-consuming sampling requirements along the indirect time domain t1. 2D total correlation spectroscopy (TOCSY) provides unique spin connectivity information for the analysis of a large number of compounds in complex mixtures, but standard methods typically require >100 t1 increments for an accurate spectral reconstruction, rendering these experiments ineffective for high-throughput applications. For a complex metabolite mixture it is demonstrated that absolute minimal sampling (AMS), based on direct fitting of resonance frequencies and amplitudes in the time domain, yields an accurate spectral reconstruction of TOCSY spectra using as few as 16 t1 points. This permits the rapid collection of homonuclear 2D NMR experiments at high resolution with measurement times that previously were only the realm of 1D experiments.  相似文献   

15.
Obtaining unambiguous resonance assignments remains a major bottleneck in solid‐state NMR studies of protein structure and dynamics. Particularly for supramolecular assemblies with large subunits (>150 residues), the analysis of crowded spectral data presents a challenge, even if three‐dimensional (3D) spectra are used. Here, we present a proton‐detected 4D solid‐state NMR assignment procedure that is tailored for large assemblies. The key to recording 4D spectra with three indirect carbon or nitrogen dimensions with their inherently large chemical shift dispersion lies in the use of sparse non‐uniform sampling (as low as 2 %). As a proof of principle, we acquired 4D (H)COCANH, (H)CACONH, and (H)CBCANH spectra of the 20 kDa bacteriophage tail‐tube protein gp17.1 in a total time of two and a half weeks. These spectra were sufficient to obtain complete resonance assignments in a straightforward manner without use of previous solution NMR data.  相似文献   

16.
The solid‐phase synthesis (SPS) of a structurally complex glycopeptide, using Sieber amide resin, was monitored by high resolution magic angle spinning NMR, demonstrating the further application of this technique. A synthetic peptidoglycan derivative, a precursor of a biologically active PGN, known to be involved in the cellular recognition, was prepared by SPS. The synthesis involved the preparation of an N‐alloc glucosamine moiety and the synthesis of a simple amino acid sequence L ‐Ala‐D ‐Glu‐L ‐Lys‐D ‐Ala‐D ‐Ala. Last step consisted the coupling, on solid‐phase, of the protected muramyl unit to the peptide chain. Proton spectra with good suppression of the polystyrene signals in swollen resin samples were obtained in DMF‐d7 as a solvent and by using a nonselective 1D TOCSY/DIPSI‐2 scheme, thus allowing to follow the SPS without losses of compound and cleavage from the resin. The assignment of the proton spectra of the resin‐bound amino acid sequence and of the bound glycopeptide was achieved through the combination of MAS COSY, TOCSY and NOESY. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   

17.
Residual water suppression by indirect covariance NMR   总被引:1,自引:0,他引:1  
Residual water solvent signals in 2D NMR experiments adversely affect appearance and subsequent analysis of spectra. A method for water suppression that is based on indirect covariance processing is described. It produces a symmetric spectrum with a water signal that is substantially decreased or completely absent. The method, which can be combined with other water suppression schemes, is demonstrated for 2D TOCSY, NOESY, and ROESY spectra of the protein, ubiquitin in aqueous solution.  相似文献   

18.
Signal amplification by reversible exchange (SABRE) is a promising method to increase the sensitivity of nuclear magnetic resonance (NMR) experiments. However, SABRE‐enhanced 1H NMR signals are short lived, and SABRE is often used to record 1D NMR spectra only. When the sample of interest is a complex mixture, this results in severe overlaps for 1H spectra. In addition, the use of a co‐substrate, whose signals may obscure the 1H spectra, is currently the most efficient way to lower the detection limit of SABRE experiments. Here, we describe an approach to obtain clean, SABRE‐hyperpolarized 2D 1H NMR spectra of mixtures of small molecules at sub‐millimolar concentrations in a single scan. The method relies on the use of para‐hydrogen together with a deuterated co‐substrate for hyperpolarization and ultrafast 2D NMR for acquisition. It is applicable to all substrates that can be polarized with SABRE.  相似文献   

19.
NMR spectroscopy is a very important and useful method for the structural analysis of oligosaccharides, despite its low sensitivity. We first applied conventional measuring methods, 2D DQF COSY, 1H–13C HSQC, and 1H–13C HMBC, and also the Double Pulsed Field Gradient Spin Echo (DPFGSE)‐TOCSY and DPFGSE‐NOESY/ROESY techniques to analyze a branched mannose pentasaccharide as a model of high mannose type N‐glycans in natural abundance. The NMR spectra of the model compound are very complex and difficult to analyze owing to overlapping signals. The superior selective irradiation capability of the DPFGSE technique is useful for fine structural and conformational analyses of such complex oligosaccharides. We here introduce a novel technique called DPFGSE‐Double‐Selective Population Transfer (SPT)‐Difference and DPFGSE‐NOE/ROE‐SPT‐Difference spectroscopy. The DPFGSE‐Double‐SPT‐Difference method involves irradiation of two peaks from one proton and the subtraction of higher and lower peaks from each spectrum. The DPFGSE‐NOE/ROE‐SPT‐Difference method involves the transfer of the magnetization polarized by NOE/ROE from the nuclei to the spin‐coupled nuclei through scalar spin–spin interaction using the SPT method. Even if the signals in the NMR spectra overlap, each signal can be accurately assigned. In particular, DPFGSE‐NOE/ROE‐SPT‐Difference is very useful for identifying sugar connectivity. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   

20.
An NMR‐based approach for rapid characterization of translational diffusion of molecules has been developed. Unlike the conventional method of acquiring a series of 2D 13C and 1H spectra, the proposed approach involves a single 2D NMR spectrum, which can be acquired in minutes. Using this method, it was possible to detect the presence of intermediate oligomeric species of diphenylalanine in solution during the process of its self‐assembly to form nanotubular structures.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号