首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Androgenic and anabolic steroids (AASs) are a class of chemical substances closely related to testosterone in molecular structure. They can be abused to enhance performances in human and equine athletes, and are banned by the sports authorities. To assist with method development for doping analyses of AASs, investigations were conducted to correlate their product ion profiles with the molecular structures. Although very similar in chemical structure, AASs generated noticeably different product ion profiles from collision‐induced dissociation (CID). On the basis of both outlines of the product ion profiles and molecular structures, AASs studied were classified into six subclasses. In each subclass, the product ion profiles were identical or similar. However, the product ion profiles in one subclass were remarkably different from those in another. The classification reveals that the position and number of double bond(s) in conjugation with the 3‐carbonyl group in the molecular structure of an AAS have significant effects on product ion profile. The presence or absence of the 19‐methyl group in an AAS also has a remarkable influence on its product ion profile. A substitution in the A‐, B‐ or D‐ring of an AAS may cause a shift in mass value of the product ions. The correlation of product ion profiles with molecular structures of AASs has the implication that each AAS can be characterized by a combination of its [M + H]+ ion and product ion profile and as a result be identified with specificity. The classified product ion pattern may be useful in the identification of unknown AASs. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   

2.
A high‐throughput and sensitive liquid chromatography–tandem mass spectrometry (LC–MS/MS) method has been developed and validated for the determination of flunarizine in human plasma. Liquid–liquid extraction under acidic conditions was used to extract flunarizine and flunarizine‐d8 from 100 μL human plasma. The mean extraction recovery obtained for flunarizine was 98.85% without compromising the sensitivity of the method. The chromatographic separation was performed on Hypersil Gold C18 (50 × 2.1 mm, 3 μm) column using methanol–10 mm ammonium formate, pH 3.0 (90:10, v/v) as the mobile phase. A tandem mass spectrometer (API‐5500) equipped with an electrospray ionization source in the positive ion mode was used for detection of flunarizine. Multiple reaction monitoring was selected for quantitation using the transitions, m/z 405.2 → 203.2 for flunarizine and m/z 413.1 → 203.2 for flunarizine‐d8. The validated concentration range was established from 0.10 to 100 ng/mL. The accuracy (96.1–103.1%), intra‐batch and inter‐batch precision (CV ≤ 5.2%) were satisfactory and the drug was stable in human plasma under all tested conditions. The method was used to evaluate the pharmacokinetics of 5 and 10 mg flunarizine tablet formulation in 24 healthy subjects. The pharmacokinetic parameters Cmax and AUC were dose‐proportional.  相似文献   

3.
A reliable, high‐throughput and sensitive LC–MS/MS procedure was developed and validated for the determination of five tyrosine kinase inhibitors in human plasma. Following their extraction from human plasma, samples were eluted on a RP Luna®‐PFP 100 Å column using a mobile phase system composed of acetonitrile and 0.01 m ammonium formate in water (pH ~4.1) with a ratio of (50:50, v /v) flowing at 0.3 mL min−1. The mass spectrometer was operating with electrospray ionization in the positive ion multiple reaction monitoring mode. The proposed methodology resulted in linear calibration plots with correlation coefficients values of r 2 = 0.9995–0.9999 from concentration ranges of 2.5–100 ng mL−1 for imatinib, 5.0–100 ng mL−1 for sorafenib, tofacitinib and afatinib, and 1.0–100 ng mL−1 for cabozantinib. The procedure was validated in terms of its specificity, limit of detection (0.32–1.71 ng mL−1), lower limit of quantification (0.97–5.07 ng mL−1), intra‐ and inter assay accuracy (−3.83 to +2.40%) and precision (<3.37%), matrix effect and recovery and stability. Our results demonstrated that the proposed method is highly reliable for routine quantification of the investigated tyrosine kinase inhibitors in human plasma and can be efficiently applied in the rapid and sensitive analysis of their clinical samples.  相似文献   

4.
A sensitive, selective and rapid liquid chromatography–tandem mass spectrometry (LC–MS/MS) method was developed for the quantification of gypenoside XLIX, a naturally occurring gypenoside of Gynostemma pentaphyllum in rat plasma and then validated according to the US Food and Drug Administration's Guidance for Industry: Bioanalytical Method Validation . Plasma samples were prepared by a simple solid‐phase extraction. Separation was performed on a Waters XBridgeTM BEH C18 chromatography column (4.6 × 50 mm, 2.5 μm) using a mobile phase of acetonitrile and water (62.5:37.5, v /v). Gypenoside XLIX and the internal standard gypenoside A were detected in the negative ion mode using selection reaction monitoring of the transitions at m/z 1045.6 → 913.5 and 897.5 → 765.4, respectively. The calibration curve was linear (R 2 > 0.990) over a concentration range of 10–7500 ng/mL with the lower quantification limit of 10 ng/mL. Intra‐ and inter‐day precision was within 8.6% and accuracy was ≤10.2%. Stability results proved that gypenoside XLIX and the IS remained stable throughout the analytical procedure. The validated LC–MS/MS method was then applied to analyze the pharmacokinetics of gypenoside XLIX after intravenous administration to rats (1.0, 2.0 and 4.0 mg/kg).  相似文献   

5.
In this study, a sensitive liquid chromatography–tandem mass spectrometry (LC–MS/MS) method was developed and validated for the quantification of demethylzeylasteral in rat plasma. Electrospray ionization was operated in the negative ion mode while demethylzeylasteral and oleanolic acid (internal standard) were measured by selected reaction monitoring (demethylzeylasteral: m/z 479.2 → 436.0; oleanolic acid: m/z 454.9 → 407.2). This LC–MS/MS method had good selectivity, sensitivity, accuracy and precision. The pharmacokinetic profiles of demethylzeylasteral were subsequently examined in Wistar rats after oral or intravenous administration.  相似文献   

6.
A simple and sensitive gas chromatography/tandem mass spectrometry (GC/MS/MS) method is described for the detection of anabolic steroids, usually found in keratin matrix at very low concentrations. Hair samples from seven athletes who spontaneously reported their abuse of anabolic steroids, and in a single case cocaine, were analyzed for methyltestosterone, nandrolone, boldenone, fluoxymesterolone, cocaine and its metabolite benzoylecgonine. Anabolic steroids were determinate by digestion of hair samples in 1 m NaOH for 15 min at 95 degrees C. After cooling, samples were purificated by solid-phase and liquid-liquid extraction, then anabolic steroids were converted to their trimethylsilyl derivative and finally analyzed by GC/MS/MS. For detection of cocaine and benzoylecgonine, hair samples were extracted with methanol in an ultrasonic bath for 2 h at 56 degrees C then overnight in a thermostatic bath at the same temperature. After the incubation, methanol was evaporated to dryness, and benzoylecgonine was converted to its trimethylsilyl derivative prior of GC/MS/MS analysis. Results obtained are in agreement with the athletes' reports, confirming that hair is a valid biological matrix to establish long-term intake of drugs.  相似文献   

7.
A sensitive and selective liquid chromatography–tandem mass spectrometry method for the determination of pethidine in human plasma was developed and validated over the concentration range of 4–2000 ng/mL. After addition of ketamine as internal standard, liquid–liquid extraction was used to produce a protein‐free extract. Chromatographic separation was achieved on a 100 × 2.1 mm, 5 µm particle, AllureTM PFP propyl column, with 45:40:15 (v/v/v) acetonitrile–methanol–water containing 0.2% formic acid as mobile phase. The MS data acquisition was accomplished by multiple reactions monitoring mode with positive electrospray ionization interface. The lower limit of quantification was 4 ng/mL; for inter‐day and intra‐day tests, the precision (RSD) for the entire validation was less than 7%, and the accuracy was within 95.9–106.5%. The method is sensitive and simple, and was successfully applied to analysis of samples of clinical intoxication. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   

8.
Through blocking the cardiac persistent sodium current, riluzole has the potential to prevent myocardial damage post cardiac bypass surgery. A sensitive UHPLC–MS/MS method was developed and validated for quantitation of riluzole and 5‐methoxypsoralen in human plasma and myocardial tissue homogenate using a liquid–liquid extraction with dichloromethane. The chromatographic separation was achieved using Shimadzu Shim‐pack XR‐ODS III, 2.0 × 50 mm, 1.6 μm column with a gradient mobile phase comprising methanol and ammonium acetate buffer pH 3.6 in purified water. The analyte and internal standard were separated within 3.5 min. Riluzole quantitation was achieved using the mass transitions of 235–138 for riluzole and 217–156 for 5‐methoxypsoralen. The method was linear for riluzole plasma concentrations from 0.2 to 500 ng/mL and myocardial tissue homogenate concentrations from 0.2 to 100 ng/mL. The method developed was successfully applied to a clinical study for patients receiving riluzole while undergoing cardiac bypass surgery.  相似文献   

9.
A simple and reliable liquid chromatography–mass spectrometry (LC–MS) method was developed for simultaneous determination of saikosaponin A, saikosaponin B1, saikosaponin C, saikosaponin D and saikosaponin F in rat plasma using glycyrrhetinic acid as an internal standard (IS). The separation was operated on a Waters BEH C18 column. The mobile phases of gradient elution consisted of acetonitrile (A) and 0.1% aqueous acetic acid (B). The mass spectrometric detection was accomplished in multiple reaction monitoring mode. The five saponins displayed good linearity (r2 > 0.9996). The lower limits of quantitation of saikosaponin A, saikosaponin B1, saikosaponin C, saikosaponin D and saikosaponin F were determined to be 2.9, 2.3, 3.5, 2.9 and 3.1 ng/mL, respectively. Moreover, the intra‐ and inter‐day precisions of the five saponins showed an RSD within 2.96%, whereas the accuracy (RE) ranged from ?2.28 to 2.78%. Finally, the developed method was fully validated and applied to a comparative pharmacokinetic study of the five bioactive saponins in rats following oral administration of crude and vinegar‐processed Bupleurum scorzonerifolium.  相似文献   

10.
We have developed and validated a fast and sensitive ultra high‐performance liquid chromatography with positive ion electrospray ionization tandem mass spectrometry method for determining N‐ butylscopolamine levels in human plasma using propranolol as an internal standard. The acquisition was set up in the multiple reaction monitoring mode with the transitions m /z 360.3 → 138.0 for N‐ butylscopolamine and m /z 260.2 → 116.1 for IS. This method uses a liquid–liquid extraction process with dichloromethane. The analyte and IS were chromatographed on a C18, 50 × 2.1 mm, 1.7 μm column through isocratic elution with acetonitrile–5 mm ammonium acetate (adjusted to pH 3.0 with formic acid). The method was linear in the 1–1000 pg/mL range for N‐ butylscopolamine and was selective, precise, accurate and robust. The validated method was successfully applied to perform a bioequivalence study of the reference (Buscopan®, from Boehringer Ingelheim) and the test sample coated‐tablet formulations (from Foundation for Popular Remedy), both containing 10 mg of N‐ butylscopolamine bromide administered as a single dose. Using 58 healthy volunteers and accounting for the high intra‐individual variability confirmed by statistical calculations (38%), the two formulations were considered bioequivalent because the rate and extent of absorption (within 80–125% interval), satisfying international requirements.  相似文献   

11.
A simple, sensitive and specific UHPLC–MS/MS method for quantification of plantagoguanidinic acid (PGA) in rat plasma was applied to investigate the pharmacokinetic behavior in vivo , using protopine as internal standard. The chromatography was separated on a Phenomenex® Luna‐C18 column (2.1 × 150 mm, 3.0 μm) within 7.0 min using a mobile phase consisting of acetonitrile–0.1% formic acid solution under gradient elution at a flow rate of 0.4 mL/min. Prepared samples were monitored by multiple reaction monitoring mode, with the target fragmentions m/z 226.2 → 84.2 for PGA and m/z 354.2 → 188.9 for IS in positive electrospray ionization. The calibration curve of PGA was linear throughout the range 1–1000 ng/mL (r = 0.9962). The lower limit of quantitation in plasma for PGA was 0.1 ng/mL, and the recovery was >88.6%. Intra‐ and interday accuracy ranged from −8.6 to 4.9%. Furthermore, this validated method was successfully used for a pre‐clinical pharmacokinetic study of PGA at a single dose of 20 and 5 mg/kg in rats via oral and intravenous administration. The study showed that PGA was absorpted rapidly and eliminated gradually with a greater absolute oral bioavailability of 70.1% in rats.  相似文献   

12.
Isomers β‐asarone and α‐asarone have recently been demonstrated to have differential pharmacological activities . Here, we report an LC–MS/MS method developed using acetonitrile to extract two isomeric phenylpropenes from rat plasma. Separation was achieved using a XDB‐C18 column (100 × 2.1 mm; i.d., 1.8 μm) with a mobile phase of methanol–0.1% formic acid (55:45, v/v) at a flow rate of 0.3 mL/min. Calibration curves ranging from 5.20 to 2080 ng/mL for β‐asarone and from 3.68 to 1470 ng/mL for α‐asarone were linear (r2 ≥ 0.9938) with the lower limits of quantification being 5.20 and 3.68 ng/mL for both isomers. Intravenous administration of β‐asarone (2.22 mg/kg) and α‐asarone (2.36 mg/kg) in rats yielded half‐lives of 13.40 ± 4.11 and 28.88 ± 7.82 min with clearance values of 0.196 ± 0.062 mL/min/kg and 0.112 ± 0.012 mL/min/kg for β‐asarone and α‐asarone, respectively.  相似文献   

13.
A novel chiral method was developed and validated to determine N‐acetyl‐glutamine (NAG) enantiomers by liquid chromatography–tandem mass spectrometry (LC–MS/MS). Enantioseparation was achieved on a Chiralpak QD‐AX column (150 × 4.6 mm i.d., 5 μm) using methanol–water (50 mm ammonium formate, pH 4.3; 70:30, v/v) at a flow rate of 500 μL/min. The detection was operated with an electrospray ionization source interface in positive mode. The ion transition for NAG enantiomers was m/z 189.0 → 130.0. The retention time of N‐acetyl‐l ‐glutamine and N‐acetyl‐d ‐glutamine were 15.2 and 17.0 min, respectively. Calibration curves were linear over the range of 0.02–20 μg/mL with r > 0.99. The deviation of accuracy and the coefficient of variation of within‐run and between‐run precision were within 10% for both enantiomers, except for the lower limit of quantification (20 ng/mL), where they deviated <15%. The recovery was >88% and no obvious matrix effect was observed. This method was successfully applied to investigate the plasma protein binding of NAG enantiomers in rats. The results showed that the plasma protein binding of NAG enantiomers was stereoselective. The assay method also exhibited good application prospects for the clinical monitoring of free drugs in plasma.  相似文献   

14.
A sensitive and rapid LC–MS/MS method was developed and validated for quantitation of sciadopitysin in rat plasma using amentoflavone as an internal standard. Sample processing was accomplished after deproteinization with 150 μL aliquot of acetonitrile. Chromatographic separation was achieved using an Agela C18 column with an isocratic mobile phase comprising 2 mm ammonium acetate–acetonitrile (35:65, v/v) at a flow rate of 0.4 mL/min. Detection was performed by selection reaction monitoring on a triple‐quadrupole mass spectrometer following the transitions m/z 579 → 547 and 537 → 375 for sciadopitysin and internal standard, respectively, in the negative ionization mode. The calibration curve was linear from 2.90 to 1160 ng/mL for sciadopitysin. Intra‐ and inter‐day precisions were in the ranges 4.1–11.4 and 5.7–9.1% for sciadopitysin. Sciadopitysin was stable under different stability conditions. The validated assay was applied to pharmacokinetic and bioavailability studies in rats.  相似文献   

15.
Cabozantinib (CBZ) is used for the treatment of progressive, metastatic medullary thyroid cancer. Its major oxidative metabolite is cabozantinib N‐oxide (CBN), which contains a structural alert associated with mutagenicity, yet the pharmacokinetics studies lack the simultaneous investigation of CBN and dose proportionality. In the current study a simple LC–MS/MS method was developed and validated for the simultaneous estimation and pharmacokinetic investigation of CBZ and CBN in rat plasma. The analytes were separated on a Waters Atlantics C18 column (2.1 × 150 mm, 3 μm). The mass spectrometry analysis was conducted in positive ionization mode with multiple reaction monitoring. Good linearity was observed over the concentration ranges of 0.500–5000 ng/mL for CBZ and 0.525–2100 ng/mL for CBN. The extraction recoveries were constant and the intra‐ and inter‐batch precision and accuracy were acceptable for the analysis of biological samples. The method was successfully applied for the simultaneous estimation of CBZ and CBN in a pharmacokinetic study in Sprague–Dawley rats. After oral administration of CBZ (1, 5 and 12.6 mg/kg), although CBZ showed dose proportionality, the metabolite CBN showed obvious nonlinear elimination pharmacokinetics with greater than dose‐proportional increases in exposure.  相似文献   

16.
An LC–MS/MS‐based bioanalytical method has been developed to measure the concentration of L‐threonate at its endogenous level in human plasma. Following isotope dilution and protein precipitation, the samples were acetylated and chromatographed under reversed‐phase conditions for baseline separation of the derivatized L‐threonate and its stereoisomer D‐erythronate. The method was assessed by a fit‐for‐purpose validation with a calibration range from 100 to 10,000 ng/mL. The intra‐run coefficients of variation (CVs) were <3.6% and the inter‐run CV was 3.2% for the QC samples at endogenous level. At the lower limit of quantitation, the intra‐run CV was 6.1% and the average inaccuracy was ?1.4%. This method provides an efficient and reliable quantitation of L‐threonate and could be useful to certain biomarker investigators.  相似文献   

17.
Hinokiflavone has drawn a lot of attention for its multiple biological activities. In this study, a sensitive and selective method for determination of hinokiflavone in rat plasma was developed for the first time, using liquid chromatography–tandem mass spectrometry (LC–MS/MS). Amentoflavone was used as an internal standard. Separation was achieved on a Hypersil Gold C18 column with isocratic elution using methanol–water (65:35, v /v) as mobile phase at a flow rate of 0.3 mL/min. A triple quadrupole mass spectrometer operating in the negative electrospray mode with selected reaction monitoring was used to detect the transitions of m/z 537 → 284 for hinokiflavone and m/z 537 → 375 for IS. The LOQ was 0.9 ng/mL with a linear range of 0.9–1000 ng/mL. The intra‐ and inter‐day accuracy (RE%) ranged from −3.75 to 6.91% and from −9.20 to 2.51% and the intra‐ and inter‐day precision (RSD) was between 0.32–14.11 and 2.85–10.04%. The validated assay was successfully applied to a pharmacokinetic study of hinokiflavone in rats. The half‐life of drug elimination at the terminal phase was 6.10 ± 1.86 h, and the area under the plasma concentration‐time curve from time zero to the time of last measurable concentration and to infinity values obtained were 2394.42 ± 466.86 and 2541.93 ± 529.85 h ng/mL, respectively.  相似文献   

18.
Quantitation of Zn‐DTPA (zinc diethylenetriamene pentaacetate, a metal chelate) in complex biological matrix is extremely challenging on account of its special physiochemical properties. This study aimed to develop a robust and specific liquid chromatography–tandem mass spectrometry (LC–MS/MS) method for determination of Zn‐DTPA in human plasma and urine. The purified samples were separated on Proteonavi (250 × 4.6 mm, 5 μm; Shiseido, Ginza, Tokyo, Japan) and a C18 guard column. The mobile phase consisted of methanol–2 mm ammonium formate (pH 6.3)–ammonia solution (50:50:0.015, v/v/v), flow rate 0.45 mL/min. The linear concentration ranges of the calibration curves for Zn‐DTPA were 1–100 μg/mL in plasma and 10–2000 μg/mL in urine. The intra‐ and inter‐day precisions for quality control (QC) samples were from 1.8 to 14.6% for Zn‐DTPA and the accuracies for QC samples were from −4.8 to 8.2%. This method was fully validated and successfully applied to the quantitation of Zn‐DTPA in plasma and urine samples of a healthy male volunteer after intravenous infusion administration of Zn‐DTPA. The result showed that the concentration of Zn‐DTPA in urine was about 20 times that in plasma, and Zn‐DTPA was completely (94.7%) excreted through urine in human.  相似文献   

19.
An LC–MS/MS method was developed and validated for the simultaneous quantification of edaravone and taurine in beagle plasma. The plasma sample was deproteinized using acetonitrile containing formic acid. Chromatographic separations were achieved on an Agilent Zorbax SB‐Aq (100 × 2.1 mm, 3.5 μm) column, with a gradient of water (containing 0.03% formic acid) and methanol as the mobile phase at a flow rate of 0.3 mL/min. The analyte detection was carried out in multiple reaction monitoring mode and the optimized precursor‐to‐product transitions of m/z [M+H]+ 175.1 → 133.0 (edaravone), m/z [M+H]+ 189.1 → 147.0 (3‐methyl‐1‐p‐tolyl‐5‐pyrazolone, internal standard, IS), m/z [M–H]? 124.1→80.0 (taurine), and m/z [M–H]? 172.0 → 80.0 (sulfanilic acid, IS) were employed to quantify edaravone, taurine, and their corresponding ISs, respectively. The LOD and the lower LOQ were 0.01 and 0.05 μg/mL for edaravone and 0.66 and 2 μg/mL for taurine, respectively. The calibration curves of these two analytes demonstrated good linearity (r > 0.99). All the validation data including the specificity, precision, recovery, and stability conformed to the acceptable requirements. This validated method has successfully been applied in the pharmacokinetic study of edaravone and taurine mixture in beagle dogs.  相似文献   

20.
A simple, rapid and sensitive liquid chromatography–tandem mass spectroscopy (LC–MS/MS) method was developed and validated for the determination of ethyl gallate, a pharmacologically active constituent isolated from Lagerstroemia speciosa (Linn.) Pers. This method was used to examine the pharmacokinetics of ethyl gallate and its major metabolite gallic acid in rat plasma using propyl gallate as an internal standard. After precipitation of the plasma proteins with acetonitrile, the analytes were separated on a Zorbax SB‐C18 column (3.5 μm, 2.1 × 50 mm) with an isocratic mobile phase consisted of methanol–acetonitrile–10 mM ammonium acetate (10 : 25 : 65, v/v/v) containing 0.1% formic acid at a flow rate of 0.25 mL/min. The Agilent G6410A triple quadrupole LC/MS system was operated under the multiple‐reaction monitoring mode using the electrospray ionization technique in negative mode. The lower limits of quantification of gallic acid and ethyl gallate of the method were 0.5 and 1.0 ng/mL. The intra‐day and inter‐day accuracy and precision of the assay were less than 8.0%. This method has been applied successfully to a pharmacokinetic study involving the intragastric administration of ethyl gallate to rats. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号