首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
1,3a,6a-Triazapentalene (TAP)-labeled enterobactin was developed as an iron ion sensor. 3-Acetylated-TAP was successfully introduced to the catechol ring of enterobactin, a well-recognized siderophore secreted by various Gram-negative bacteria. The fluorescence of TAP-labeled enterobactin decreased gradually as the amount of Fe3+ ion as an additive was increased, and 1.2 equiv of Fe3+ ion completely quenched the fluorescence. In clear contrast, when other metal ions were used, the fluorescence of TAP-labeled enterobactin remained even at 5.0 equiv.  相似文献   

2.
《Tetrahedron letters》2014,55(30):4062-4066
A fluorescent chemosensor 1 was synthesized containing a coumarin moiety bound to rhodamine B hydrazide. Compound 1 displayed different fluorescence emission responses to Al3+ and Ca2+ ions with high quantum yields (0.64 and 0.15, respectively) and low detection limits (3.0 × 10–8 and 9.4 × 10–8 M, respectively). The possible binding modes of compound 1 with Al3+ and Ca2+ ion were calculated using a Job plot, HRMS, 1H NMR spectroscopic titration and IR spectroscopy. Moreover, the calcium in 1-Ca2+ could be displaced by Al3+ ions, resulting in another ratiometric sensing signal output, which indicates that 1-Ca2+ could detect Al3+ ions in a ratiometric way. Bioimaging results also demonstrated that compound 1 could act as an intracellular Al3+ ion imaging sensor.  相似文献   

3.
We herein designed and synthesized a light-up fluorescent probe L1 for Hg2+ species, which is based on indole derivative and Rhodamine fluorophore. The new probe can show a linear response to Hg2+ with high sensitivity and selectivity. As the Hg2+ concentration changed from 0 to 450 μM, the fluorescence intensity of L1 at 575 nm changed from 50 to 6181 (~120-fold). The detection limit of the probe was 5.0 × 10?8 M. Besides, we have successfully applied L1 to monitor Hg2+ species in living MCF-7 cells by way of fluorescence imaging.  相似文献   

4.
A novel fluorescent chemsensor TBS-protected salicylaldehyde azine (TSAA) for fluoride ion was developed based on aggregation-induced emission (AIE). The probe TSAA was prepared by the reaction of salicylaldehyde azine (SAA) with tert-butyldimethylsilyl chloride (TBS-Cl) via an unusual synthetic methodology and shows only non-emission. Upon treatment with fluoride in aqueous MeCN solution, the TBS protective group of probe TSAA was removed readily and the fluorescence of the probe was switched on, which resulted in a new fluorescence peak around 543 nm. The fluorescent intensity at 543 nm increases linearly with fluoride ion concentration in the range 1–50 μmol L?1. This proposed probe shows excellent selectivity toward fluoride ion over other common anions and cations.  相似文献   

5.
In this work, we report a novel fluorescence chemosensor HM based on the coumarin fluorophore for the quantification of Zn2+ and AcO?. HM specifically binds to Zn2+ in the presence of other competing cations, and evident changes in UV–vis and fluorescence spectra in HEPES buffer are noticed. The in situ generated HM-Zn2+ complex solution exhibit a high selectivity toward AcO? via Zn2+ displacement approach. The detection limits of HM for Zn2+ and HM-Zn2+ for AcO? were estimated to be 7.24 × 10?8 M and 9.41 × 10?8 M, respectively. HM and the resultant complex HM-Zn2+ exhibit low cytotoxicity and cell-membrane permeability, which makes them capable of Zn2+ and AcO? imaging in living Hep G2 cells. A B3LYP/6-31G(d,p) basis set was employed for optimization of HM and HM-Zn2+ complex.  相似文献   

6.
Since the copper ions (Cu2+) play a fatal role in many foundational physiological processes, it is important to develop a simple, highly sensitive and selective sensor for Cu2+ detection in living systems. Herein, an intramolecular charge transfer (ICT) and dansyl-based fluorescent chemosensor 1 was designed, synthesized and characterized for the sensitive and selective quantification of Cu2+. It exhibited remarkable fluorescence quenching upon addition of Cu2+ over other selected metal ions, attributed to the complex formation between 1 and Cu2+ with the association constant 6.7 × 105 M?1. The sensor 1 showed a fast and linear response towards Cu2+ in the concentration range from 0 to 12.5 × 10?6 mol L?1 with the detection limit of 2.5 × 10?7 mol L?1. This detection could be carried out in a wide pH range of 5.0–14. Furthermore, sensor 1 can be used for detecting Cu2+ in living cells.  相似文献   

7.
A novel quinoline-functionalized Schiff-base derivative PY was designed and synthesized. Sensor PY displayed highly selective and sensitive fluorescence enhancement and naked-eye color change to Fe3+ in the presence of other competing cations. The mechanisms have been supported by Job’s plot evaluation, FT-MS and theoretical calculations. The in situ generated PY-Fe3+ complex solution exhibited a high selectivity toward PPi via Fe3+ displacement approach. The detection limits of sensor PY to Fe3+ and PY-Fe3+ complex to PPi were estimated to be 4.24 × 10?8 M and 8.18 × 10?8 M, respectively. This successive recognition feature of sensor PY makes it has a potential utility for Fe3+ and PPi detection in aqueous solution. A B3LYP/6-31G(d,p) basis set was employed for optimization of PY and PY-Fe3+ complex.  相似文献   

8.
A new tetraphenylethene-based fluorescent probe 2-(quinolin-8-yliminomethyl)-4-triphenylvinyl-phenol (HL) for detecting Zn2+ ion through the excited state intramolecular proton transfer (ESIPT) and chelation enhanced fluorescence (CHEF) processes has been designed and synthesized. The results show that HL emits relatively strong blue fluorescence at 460 nm without Zn2+ ion, however, probe HL displays highly pink fluorescent emission at 600 nm when adding Zn2+ ion. The fluorescent emission of HL appears an extremely large Stokes shift, which effectively reduces the interference of background signal. The limit of detection of HL for Zn2+ ion can reach to 9.0 × 10–8 M.  相似文献   

9.
We developed a simple Cu2+-selective turn-on fluorescence signaling probe based on the hydrolysis of 1-pyrenecarbohydrazide (1) to 1-pyrenecarboxylic acid. Probe 1 exhibited prominent fluorescence signaling of Cu2+ ions in a 10% aqueous Tris-buffered (pH 7.0) DMSO solution with a detection limit of 5.93 × 10?8 M. Signaling with control compounds derived from pyreneacetic acid and pyrenebutyric acid showed that the fluorescence signal became less pronounced as the distance between the hydrazide functionality and the pyrene fluorophore increased. As a practical application, this probe was employed for the determination of Cu2+ in a simulated semiconductor wastewater.  相似文献   

10.
Two low cytotoxic fluorescence probes Rb1 and Rb2 detecting Fe3+ were synthesized and evaluated. Rb1 and Rb2 exhibited an excellent selectivity to Fe3+, which was not disturbed by Ag+, Li+, K+, Na+, NH4+, Fe2+, Pb2+, Ba2+, Cd2+, Ni2+, Co2+, Mn2+, Zn2+, Mg2+, Hg2+, Ca2+, Cu2+, Ce3+, AcO?, Br?, Cl?, HPO42?, HSO3?, I?, NO3?, S2O32?, SO32? and SO42? ions. The detection limits were 1.87 × 10?7 M for Rb1 and 5.60 × 10?7 M for Rb2, respectively. 1:1 stoichiometry and 1:2 stoichiometry were the most likely recognition mode of Rb1 or Rb2 towards Fe3+, and the corresponding OFF–ON fluorescence mechanisms of Rb1 and Rb2 were proposed.  相似文献   

11.
A simple Schiff base CTS, synthesized between 2-hydroxy-1-naphthaldehyde and 2-benzylthio-ethanamine, was found to be a good turn-on fluorescence probe for the detection of Zn2+, due to the restriction of the rotation of the bond between CN and naphthalene ring and/or the blocking of the photo-induced electron transfer (PET) mechanism of the nitrogen atom to naphthalene ring. Excellent selectivity for Zn2+ was evidenced, over many other competing ions, including Fe3+, Cr3+, Ni2+, Co2+, Fe2+,Mn2+, Ca2+, Hg2+, Pb2+, Cu2+, Mg2+, Ba2+, Cd2+, Ag+, Li+, K+, and Na+, in EtOH/HEPES buffer (95:5, v/v, pH = 7.4). It was noteworthy that Cd2+ had no interference with Zn2+. The stoichiometric complex of CTS-Zn2+ was determined to be 2:1 for CTS and Zn2+ in molar, based on the Job plot and single crystal X-ray diffraction data. The binding constant of the complex was 85.7 M?2 with a detection limit of 5.03 × 10?7 M. The fluorescence bio-imaging capability of CTS to detect Zn2+ in live cells was also studied. These results indicated that CTS could serve as a favorable probe for Zn2+.  相似文献   

12.
《Comptes Rendus Chimie》2014,17(6):557-562
Chromophoric sensors were made based on 8-hydroxyquinoline immobilized onto a thin film of a polymer blend matrix. The thin films were made by the solution casting method using cellulose triacetate and polyethylene glycol (PEG 600) as plasticizer and pore-forming agent. Different contents of PEG 600 additive were investigated. The prepared films were characterized by FTIR and thermal analysis. The absorption and fluorescence spectra of different films were dependent on the content of PEG 600 with clear quenching of the fluorescence of the film that contains PEG 600 compared to that with zero content. This behavior was attributed to the collective effect of hydrogen bonding (intra- and intermolecular hydrogen bonding) that enhances the process of excited-state proton transfer. This result is favorable to a responsive sensor that shows fluorescence off in the absence of metal ions and fluorescence on upon metal ion chelation. The detection of 5 × 10−5 M of Al3+, Zn2+ and thallium (I) in aqueous solution has been observed with the fluorescence method. The result obtained is consistent with the enhancing effect of PEG 600 in the detectability of metal ions. Compared with the detection of Al3+ and Zn2+, the sensor shows better detection of thallium (I), with clear fluorescence spectra.  相似文献   

13.
A novel pyrazoline with benzimidazole substituent was conveniently synthesized, starting from a chalcone and 2-hydrazinylpyridine. The addition of Ni2+ to ethanol solution of the synthesized pyrazoline resulted in a rapid color change from blue to green which allows the selective detection of Ni2+ ion over a great number of other metal ions. The association constant for the 1:1 complex was determined to be 2.72 × 107 M?1.  相似文献   

14.
A simple highly sensitive and selective turn-on fluorescent chemosensor L based on bis-Schiff-base for Pb2+ ions was synthesized and characterized by spectroscopic techniques. L having high binding affinity towards Pb2+ ions of 2.10 × 104 M?1 selectively detects Pb2+ ions with almost no interference among various competitive ions by a 11-fold fluorescent enhancement in CH3CN/H2O (95:5, v/v) solution over a wide pH range. Moreover, sensor L displayed a lower detection limit of 3.80 × 10?7 M, which is low enough for sensing sub-millimolar concentration of Pb2+ encountered practically.  相似文献   

15.
Benzofuran-2-boronic acid could be used as a fluorescent sensor for the detection of Pd2+ because it was rapidly converted to highly fluorescent derivative after mixing with Pd2+ under basic condition at room temperature. We found that dimerization of benzofuran was occurred to form fluorescent derivative by the catalytic activity of palladium. The fluorescence intensity at 360 nm increased with increasing the concentration of Pd2+. The excellent selectivity for Pd2+ was demonstrated among other metal ions. Based on this findings, we successfully applied benzofuran-2-boronic acid to develop a microplate-based assay for high-throughput measurement of Pd2+. The detection limit (blank + 3SD) for Pd2+ of the proposed assay was 9.8 nM.  相似文献   

16.
A novel thiophene attached anthracene (TA) based fluorescent compound was designed and synthesized. The TA showed a high quantum yield (Qy = 0.34) in regard to fluorescence. We applied this TA compound to detect specific metal compound and found that it could identify CuCl2 from other metals through dramatic fluorescence change at λmax = 460 nm. It showed strong quenching fluorescence property with CuCl2 while with other metal compounds it exhibited strong blue fluorescence emission. UV/Vis absorption spectroscopy clearly demonstrated that the quenching property of TA at λmax = 460 nm was due to overlapping of the fluorescence peak of TA at λmax = 460 nm and the absorption band of CuCl2 (from 190 nm to 525 nm). Binding constant (K′), which was 0.0895 mM?2, indicated a complexation ratio between TA and CuCl2 as 1:2 and this interaction induced quenching property.  相似文献   

17.
A new diarylethene with ethylimidazo[2,1-b]thiazole-6-hydrazide unit was synthesized, and its photochromic and fluorescent behaviors have been systematically investigated by the stimulation of lights and metal ions in methanol. This new diarylethene exhibited high selectivity and sensitivity toward Al3+ and Zn2+. The addition of Al3+ and Zn2+ displayed excellent colorimetric response behaviour with the concomitant color change from colorless to yellow, which could be easily observed by the naked eye. Upon addition of Al3+, the fluorescence intensity was enhanced by 180–fold and the emission peak of 1O–Al3+ blue-shifted by 15?nm accompanied with a color change from colorless to bright blue. In contrast, when stimulated with Zn2+, its fluorescence intensity was enhanced by 35–fold and the emission peak of 1O–Zn2+ red-shifted by 16?nm with an evident color change from black to bright green. The LOD for Al3+ and Zn2+ were determined to be 2.97?×?10?9?mol?L?1 and 5.98?×?10?9?mol?L?1, respectively. Moreover, a logic circuit was constructed with the fluorescence intensity as the output signal responding to the light and chemical species as the inputs.  相似文献   

18.
A novel compound was designed and synthesized by connecting a dicyanobenzene acceptor and two 9,9-dimethyl-9,10-dihydroacridine donors to the 1,3,5-position of a phenyl ring by meta-position connection. This compound, which is a novel emitter for OLED devices, exhibits preferable heat stability. Moreover, the energy gap between its singlet and triplet states is as small as 0.04 eV, resulting in this molecule possesses thermally activated delayed fluorescence. Therefore, the corresponding device showed efficient electroluminescent performances. The maximum external quantum efficiency, maximum current efficiency, maximum power efficiency and maximum luminance were 16.5%, 40.8 cd A?1, 45.8 lm W?1 and 5120 cd m?2, respectively. In addition, the CIEx,y only changed from (0.22, 0.38) to (0.22, 0.39) over the entire operating voltage range, which confirms that the device possesses highly stable chromaticity with respect to the current density. Based on these experimental results, meta-connected type structures may provide a new approach for developing high-performance TADF emitters for OLED applications.  相似文献   

19.
The glasses of the composition (40 ? x)PbO–(5 + x)Al2O3–54SiO2:1.0Yb2O3 (in mol%) with x ranging from 5 to 10 have been synthesized. The IR spectral studies of these glasses have indicated that there is a gradual transformation of Al3+ ions from tetrahedral to octahedral coordination with increase of Al2O3 content in the glass network. The optical absorption and luminescence spectra have exhibited bands originating from 2F7/2  2F5/2 and 2F5/2  2F7/2 transitions, respectively. From these spectra, the absorption and emission cross-sections and fluorescence lifetime of Yb3+ ions have been evaluated. Quantitative analysis of these data indicated a decreasing radiative trapping and increasing fluorescence lifetime of Yb3+ ions with increasing Al2O3 content. This may be explained by structural variations in the vicinity of Yb3+ ions due to variation in the concentration of Al2O3 in the glass network.  相似文献   

20.
Quinoline-based fluorescent probe as a recognition unit was designed and synthesized in this study. The probe R1 displayed excellent selectivity and sensitivity for cadmium ions (Cd2+) over a wide range of metal ions in acetonitrile-water (MeCN-H2O) mixed solution. In order to better understand the recognition mechanism between probe and Cd2+, the density functional theory calculations were performed. Finally, the colorimetric experiment result was observed and conveniently monitored by the naked eye, and a visual detection limit of 4 × 10?6 mol L?1 was achieved. These experimental results indicated the promising potential of the probe to detect Cd2+ in biological system. Furthermore, the probe R1 was successfully used for the highly sensitive detection of Cd2+ in living cells.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号