首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 578 毫秒
1.
This study develops an improved method for generating aluminum mold inserts used in the replication of polymer‐based microfluidic chip. Since molding masters that are suitable for microfluidic chip replication must have features whose dimensions are of the order of tens to hundreds of microns, micro electrical discharge machining is employed herein to fabricate an aluminum mold insert of a microfluidic chip. The width and depth of the aluminum mold insert for the microfluidic chip are 61.50 and 49.61 µm, respectively. The surface roughness values of the microchannel and the sample reservoir in aluminum mold insert for the microfluidic chip are 53.9 and 34.3 nm, respectively. PMMA material is adopted as the molded microfluidic chip that is produced by micro‐hot embossing molding. The PMMA material can replicate the microchannel and sample reservoir very well when the aluminum mold insert is used in micro‐hot embossing molding. The results indicate that the most important parameter in the replication of molded microfluidic chip is the embossing pressure, which is also the most important parameter in determining the surface roughness of the molded microfluidic chip. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   

2.
The application of silicon mold inserts by micro‐hot embossing molding has been explored in microfluidic chip fabrication. For the mold insert, this study employed an SU‐8 photoresist to coat the silicon wafer. Ultraviolet light was then used to expose the pattern on the SU‐8 photoresist surface. This study replicates the microstructure of the silicon mold insert by micro‐hot embossing molding. Different processing parameters (embossing temperature, embossing pressure, embossing time, and de‐molding temperature) for the cycle‐olefin polymer (COP) film of microfluidic chips are evaluated. The results showed that the most important parameter for replication of molded microfluidic chip is embossing temperature. De‐molding temperature is the most important parameter for surface roughness of the molded microfluidic chip. The microchannel is bonded with a cover by thermal bonding processing to form the sealed microfluidic chip. The bonding temperature is the most important factor in the bonding strength of the sealed microfluidic chip. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   

3.
This study proposed a novel technology, which uses exposed technology with ultraviolet light‐emitting‐diode (UV‐LED) arrays and the polydimethylsiloxane (PDMS) magnetic flexible soft mold imprint technology, to develop exposed equipments with UV‐LED arrays. This study used magnetic soft mold imprint technology to replicate the structure of microlens, providing a more effective alternative for imprint technology and application. The measurement results showed that PDMS with magnetic iron powder can precisely cast mold to replicate the structures of microlens. Electromagnetic plates were used to control even imprinting with magnetic force, in order to fill the mold of micro‐structure of the photo‐resist. Magnetic iron powder was added to PDMS to produce composite material, which can effectively avoid the transformation of pure PDMS during soft mold imprinting, and increase mechanical strength. Magnetic PDMS soft mold is easy to make, and the casting time is short, so that costs can be effectively reduced. Also with advantages of less free energy on its surface, and unlikely to adhere to the photo‐resist during imprinting, it can be combined with electromagnetic plates evenly to control the magnetic soft mold. This imprinting technology is a big advantage to the production process of micro‐structures during imprinting. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   

4.
Metallic glasses (MGs) have been reported to be excellent mold insert materials for hot embossing of polymers, but limited by the simple shape of the embossed polymer devices and the high cost resulted by the application of Pt‐ and Pd‐based MGs. The development of inexpensive MG mold inserts with complex shape as well as high accuracy is of great importance. In present work, polymethylmethacrylate optic devices with complex micro structures and excellent grating performance have been hot embossed precisely by using newly developed centimeter‐sized Ni62Pd19Si2P17 MG molds. The Ni62Pd19Si2P17 MG exhibits high fracture strength of 1840 MPa, distinctive plastic strain of 4% and high thermal‐stability. The die imprinted MG microstructures exhibit very low linear shrinkage (0.002 μm) and relative linear shrinkage rate (0.033%). It indicates that the Ni62Pd19Si2P17 MG could serve as inexpensive and durable mold inserts for precise embossing of polymer micro devices in large scale. © 2015 Wiley Periodicals, Inc. J. Polym. Sci., Part B: Polym. Phys. 2015 , 53, 463–467  相似文献   

5.
Microlens projection lithography is a kind of non‐contact projection lithography that uses microlens array components as the projection lenses to produce a large area of microstructural array patterns on photoresisting film. This technology requires partial masking of light on the non‐lens portion of the microlens array, and the conventional approach is through an aligned exposure followed by the plating process that would require accurate positioning equipment, so it is naturally time‐consuming as well as costly in terms of the entire production process. This study applies an innovative technology in the production process that uses a microcircular‐hole array to penetrate a stainless‐steel substrate as the mold, and in collaboration with gas‐assisted thermal pressuring production process that utilizes surface tension of the plastic film to fabricate the hemisphere‐shaped plastic microlens array that is capable of masking light as the projection lens. With such a lens, in collaboration with optic expansion film, Fresnel lens, and millimeter‐grade single‐pattern photomasks, the microlens array projection lithographical optical system is constructed. Using regular millimeter‐grade photomasks, a micrometer‐grade array pattern is successfully fabricated on the photoresist layer through the process of projection exposure and development using such a microlens array projection lithographical optical system. Copyright © 2007 John Wiley & Sons, Ltd.  相似文献   

6.
Replication of microstructures from a mold onto a curved surface is difficult. The conformal contact between the mold and the substrate has to be ensured. The present study proposes an innovative mechanism, which employs an electromagnetic disk to provide magnetic force and a PDMS flexible mold with a layer compounded magnetic powder. This mechanism provides not only the gradual contact from center to edge to avoid air entrapment but also conformal contact between the mold and the substrate during the imprinting operation. A system based on this electromagnetic soft imprinting technology has been implemented, and imprinting to replicate microstructures from the mold onto a curved surface has been carried out. The results reveal that the PDMS magnetic mold and the electromagnetic disk‐controlled magnetic force can successfully perform the imprinting and accurately replicate the microstructures onto the large‐area, curved surface glass. The PDMS flexible magnetic mold incorporated with the magnetic disk can be employed to achieve the conformal contact between the mold and the substrate. In addition, due to the low surface free energy of the PDMS, the de‐molding without sticking can be easily accomplished. Copyright © 2008 John Wiley & Sons, Ltd.  相似文献   

7.
Due to the limitations on the choice of wavelengths available for light source, nanograde structures are facing technological bottlenecks and their method of preparation using current lithography and imaging technology is extremely costly. The idea is thus born to develop a nanopressuring and manufacturing technology, in order to further develop a low‐cost and more reliable technology to manufacture nanodevices in full scale. This study combines the characteristics of soft lithography, photo‐resist, and gas‐assisted pressuring, as well as studies the use of gas‐assisted pressuring and soft mold to emboss photo‐resist to manufacture optical waveguide devices, such that the nanopressuring technology may be more mature. Study results show that polydimethylsiloxane (PDMS) is able to accurately emboss and replicate nanograde buried waveguide structures, by using even pressure gas to achieve full contact with the surface of the substrate thus greatly increasing the effective pressuring area. Also, PDMS soft molds are easier to make with short embossing time to effectively reduce cost. Another advantage of combining gas‐assisted pressuring with PDMS soft molds in the manufacturing process is that PDMS soft molds possess low free energy on the surface and are difficult for resist to adhere. Copyright © 2007 John Wiley & Sons, Ltd.  相似文献   

8.
The warpage of injection–compression‐molded optical media, such as compact discs and digital video discs, due to asymmetric cooling during production is predicted. Thermally induced stress is calculated with a nonisothermal compressible flow simulation with a viscoelastic constitutive model. A finite element analysis is formulated with axisymmetric plate elements based on Kirchhoff thin‐plate theory to simulate the warpage of the disc due to the asymmetric thermal stress and gravity after demolding. Simulation results of warpage for compact‐disc‐recordable moldings are compared with experimental observations under different processing conditions, such as the melt temperature, mold temperature, and packing pressure, with an optical grade of polycarbonate. The comparison shows that the simulation well predicts the effects of various processing conditions. Both the simulation and experiment indicate that of the processing conditions, the mold temperature has the greatest effect on warpage. © 2003 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 41: 859–872, 2003  相似文献   

9.
A combination of UV embossing, hot embossing and laminating techniques have been exploited during the fabrication of grating-coupled waveguiding devices in which the flow channel materials and geometry are designed for the effective support of light condenser modes through a sample solution. Used in conjunction with LED sources, these devices have been employed as optical platforms to obtain fluorescence emission and molecular absorption spectra in aqueous media for microTAS (micro total analytical system) applications.  相似文献   

10.
Multi-walled carbon nanotube (MWCNT) reinforced polylactide (PLA) nanocomposites were injected molded into a mold with micro needle patterns. In order to alleviate the hesitation effect caused by an increased melt viscositgy of PLA/CNT nanocomposites, the effects of the injection speed and holding pressure on the replication property were investigated. The effects of MWCNTs on the crystallization, thermal behavior, replication properties, replication and surface properties of micro injection molded PLA/CNT nanocomposites were investigated. An analysis of crystallinity and thermal behavior indicated that the MWCNTs promoted the unique α’ to α crystal transition of PLA, leading to an enhancement of surface modulus and hardness, as measured using a nanoindentation technique. The specific interaction between PLA and MWCNTs was characterized using an equilibrium melting point depression technique. Furthermore, the MWCNTs increased the activation energy for thermal degradation of PLA due to the physical barrier effect. The improved replication quality of the microfeatures in the PLA/MWCNT nanocomposites has been achieved by elevating injection speed and holding pressure, which enhances the polymer filling ability within the micro cavity. A replication ratio greater than 96% for the micro injection molded PLA/CNT nanocomposites were achieved at holding pressure of 100 MPa and injection speed of 120 mm/s. This study shows that processing conditions significantly influence the replication and surface properties of micro injection molded PLA/CNT nanocomposites.  相似文献   

11.
The present study employs an innovative technique, which uses PDMS soft mold, blended with magnetic powder as the transmission and imprinting methods, and integrates features from soft micromolding PMMA, an electro‐magnetically controlled, well‐proportioned, pressing technique in order to study how to create microlens arrays through a magnetic soft mold imprinting resist technique. Thus, it renders nanometer imprinting applications, and its technology, more developed and mature. The research findings revealed that, PDMS, blended with magnetic powder, can accurately recast and duplicate nanometer microstructures. Under well‐proportioned magnetic pressing, controlled by an electro‐magnetic disk, it can effectively fill and shape resist microstructures. The composite material of PDMS, with added magnetic iron powder, can effectively improve mechanical strength properties of pure PDMS soft mold, which is easily transformed for imprinting. Meanwhile, owing to the unique features of PDMS soft mold, conformal contact with the base material is possible; therefore, the effective imprinting area and the duplicated representation are significantly improved. In addition, as magnetic PDMS soft mold is easily produced and fast in recasting, the costs can be effectively reduced. In addition, due to features such as low surface free energy and a tendency not to stick to resist in imprinting, the soft mold is evenly controlled by the electro‐magnetic disk for imprinting duplication, highlighting the advantages of microstructure imprinting procedures. Copyright © 2008 John Wiley & Sons, Ltd.  相似文献   

12.
Kim SH  Cui Y  Lee MJ  Nam SW  Oh D  Kang SH  Kim YS  Park S 《Lab on a chip》2011,11(2):348-353
This study describes a simple and low cost method for fabricating enclosed transparent hydrophilic nanochannels by coating low-viscosity PDMS (monoglycidyl ether-terminated polydimethylsiloxane) as an adhesion layer onto the surface of the nanotrenches that are molded with a urethane-based UV-curable polymer, Norland Optical Adhesive (NOA 63). In detail, the nanotrenches made of NOA 63 were replicated from a Si master mold and coated with 6 nm thick layer of PDMS. These nanotrenches underwent an oxygen plasma treatment and finally were bound to a cover glass by chemical bonding between silanol and hydroxyl groups. Hydrophobic recovery that is observed in the bulk PDMS was not observed in the thin film of PDMS on the mold and the PDMS-coated nanochannel maintained its surface hydrophilicity for at least one month. The potentials of the nanochannels for bioapplications were demonstrated by stretching λ-DNA (48,502 bp) in the channels. Therefore, this fabrication approach provides a practical solution for the simple fabrication of the nanochannels for bioapplications.  相似文献   

13.
The wetting properties of polypropylene (PP) surfaces were modified by adjusting the dimensions of the surface nanostructure. The nanostructures were generated by injection molding with nanoporous anodized aluminum oxide (AAO) as the mold insert. Atomic layer deposition (ALD) of molybdenum nitride film was used to control the pore diameters of the AAO inserts. The original 50-nm pore diameter of AAO was adjusted by depositing films of thickness 5, 10, and 15 nm on AAO. Bis(tert-butylimido)-bis(dimethylamido)molybdenum and ammonia were used as precursors in deposition. The resulting pore diameters in the nitride-coated AAO inserts were 40, 30, and 20 nm, respectively. Injection molding of PP was conducted with the coated inserts, as well as with the non-coated insert. Besides the pore diameter, the injection mold temperature was varied with temperatures of 50, 70, and 90 degrees C tested. Water contact angles of PP casts were measured and compared with theoretical contact angles calculated from Wenzel and Cassie-Baxter theories. The highest contact angle, 140 degrees , was observed for PP molded with the AAO mold insert with 30-nm pore diameter. The Cassie-Baxter theory showed better fit than the Wenzel theory to the experimental values. With the optimal AAO mask, the nanofeatures in the molded PP pieces were 100 nm high. In explanation of this finding, it is suggested that some sticking and stretching of the nanofeatures occurs during the molding. Increase in the mold temperature increased the contact angle.  相似文献   

14.
Li HF  Lin JM  Su RG  Cai ZW  Uchiyama K 《Electrophoresis》2005,26(9):1825-1833
A protocol of producing multiple polymeric masters from an original glass master mold has been developed, which enables the production of multiple poly(dimethylsiloxane) (PDMS)-based microfluidic devices in a low-cost and efficient manner. Standard wet-etching techniques were used to fabricate an original glass master with negative features, from which more than 50 polymethylmethacrylate (PMMA) positive replica masters were rapidly created using the thermal printing technique. The time to replicate each PMMA master was as short as 20 min. The PMMA replica masters have excellent structural features and could be used to cast PDMS devices for many times. An integration geometry designed for laser-induced fluorescence (LIF) detection, which contains normal deep microfluidic channels and a much deeper optical fiber channel, was successfully transferred into PDMS devices. The positive relief on seven PMMA replica masters is replicated with regard to the negative original glass master, with a depth average variation of 0.89% for 26-microm deep microfluidic channels and 1.16% for the 90 mum deep fiber channel. The imprinted positive relief in PMMA from master-to-master is reproducible with relative standard deviations (RSDs) of 1.06% for the maximum width and 0.46% for depth in terms of the separation channel. The PDMS devices fabricated from the PMMA replica masters were characterized and applied to the separation of a fluorescein isothiocyanate (FITC)-labeled epinephrine sample.  相似文献   

15.
SMC (sheet molding compound) is a composite based on fibers‐reinforced unsaturated polyester (UP) resin molded usually at 140°C to 170°C under a pressure of 60 to 100 bars. In order to develop new SMC formulations that can be molded at lower temperature (100°C) for economic and environmental reasons, the formulation of the composite had to be completely modified, both to allow a rapid reaction at 100°C, but also to avoid a vitrification phenomenon due to the fact that the glass transition temperature (Tg) of the SMC parts becomes, during the molding process, higher than the mold temperature. In this paper, the relation between the molding temperature, the glass transition temperature, and the final conversion of UP resin/styrene formulations has been underlined. The Tg of the cured resin was decreased by two different ways. The first way involved the reduction of the crosslinking density of the UP resin by using a blend of two resins, a pure maleic and a more flexible one. This blend allows to adjust the Tg over a temperature range from 197°C (Tg of the pure UP resin) to 75°C (Tg of the pure flexible resin). The second way consisted in the addition of butyl methacrylate (BuMA), a reactive plasticizer, to the formulation, allowing a decrease of the final material's Tg from 197°C to 130°C by replacing 35 wt% of styrene by BuMA. These two methods allow to obtain a final conversion of 99% after 8 minutes of molding at 100°C.  相似文献   

16.
We present the results of large-scale molecular dynamics simulations of two different nanolithographic processes, step-flash imprint lithography (SFIL), and hot embossing. We insert rigid stamps into an entangled bead-spring polymer melt above the glass transition temperature. After equilibration, the polymer is then hardened in one of two ways, depending on the specific process to be modeled. For SFIL, we cross-link the polymer chains by introducing bonds between neighboring beads. To model hot embossing, we instead cool the melt to below the glass transition temperature. We then study the ability of these methods to retain features by removing the stamps, both with a zero-stress removal process in which stamp atoms are instantaneously deleted from the system as well as a more physical process in which the stamp is pulled from the hardened polymer at fixed velocity. We find that it is necessary to coat the stamp with an antifriction coating to achieve clean removal of the stamp. We further find that a high density of cross-links is necessary for good feature retention in the SFIL process. The hot embossing process results in good feature retention at all length scales studied as long as coated, low surface energy stamps are used.  相似文献   

17.
A simple method for fabricating micro/nanoscale hierarchical structures is presented using a two-step temperature-directed capillary molding technique. This lithographic method involves a sequential application of the molding process in which a uniform polymer-coated surface is molded with a patterned mold by means of capillary force above the glass transition temperature of the polymer. Various microstructures and nanostructures were fabricated with minimum resolution down to approximately 50 nm with good reproducibility. Also contact angle measurements of water indicated that two wetting states coexist on a multiscale hierarchical structure where heterogeneous wetting is dominant for the microstructure and homogeneous wetting for the nanostructure. A simple theoretical model combining these two wetting states was presented, which was in good agreement with the experimental data. Using this approach, multiscale hierarchical structures for biomimetic functional surfaces can be fabricated with precise control over geometrical parameters and the wettability of a solid surface can be tailored in a controllable manner.  相似文献   

18.
Microfluidic devices have been fabricated on polycarbonate (PC) substrates by use of a hot embossing method using a silicon master template. By adding auxiliary lines around the functional channel on the silicon master, its lifetime was significantly prolonged and the bonding strength of the PC cover plate to the microfluidic chip was greatly improved. More than 300 polycarbonate microfluidic chips have been replicated with the same silicon mold. CE separation of X-174/HaeIII DNA restriction fragments, with high resolution efficiency and good reproducibility, was achieved on these devices using the low-viscosity sieving matrix HPMC-50. Temperature was found to have a significant effect on separation efficiency.  相似文献   

19.
微接触印刷法控制硫化物晶体生长   总被引:3,自引:0,他引:3  
十八烷基三氯硅烷;三氯硅烷;阵列;微接触印刷法控制硫化物晶体生长  相似文献   

20.
The usage of rapid heat cycle molding (RHCM) has gained increasing attention in overcoming the limits of conventional injection molding (CIM) and improving the surface quality and mechanical properties of molded plastic products. In RHCM, the vario‐thermal mold temperature control system is the key technique because it directly affects the molding cycle time and the final part quality. In this study, a new RHCM technology with electric heating and coolant cooling was studied in detail. Two different RHCM mold structures for a large LCD TV panel were proposed and designed. The numerical simulation method was used to analyze the thermal response of the mold cavity surface at the heating stage and the thermal response of the resin melt at the cooling stage. The heating/cooling efficiency of the proposed electric heating RHCM system was evaluated. The thermal expansion analysis of mold cavity was implemented and the fixation of the cavity in molds was also optimized. The results showed that the electric‐heating mold with a separate cooling plate can efficiently enhance the heating efficiency. The thermal expansion of the cavity surface can be reduced by increasing the alleviating‐gap between the cavity and the cavity‐retainer plate. Then, the service lifetime of the electric‐heating mold can be improved. A RHCM production line with electric heating for the large LCD TV panel was constructed. Both the simulation and test production results indicate that the proposed electric heating RHCM technique can realize high‐temperature injection molding without increasing the molding cycle time. The surface appearance of the LCD TV panels was dramatically improved and the surface marks that usually occur in CIM process were eliminated completely. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号