首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Oxazepam has been subjected to controlled degradation at 100°C for 3 h in 0.5 M HCl and 0.5 M NaOH. Following neutralisation of the degradation mixture and removal of salts by solid‐phase extraction (SPE), isocratic high‐performance liquid chromatography/mass spectrometry (HPLC/MS) using water/methanol (25:75 v/v) as the mobile phase was carried out using a flow diverter to collect fractions prior to their characterisation by electrospray ionisation multi‐stage mass spectrometry (ESI‐MSn) and proposal of the corresponding fragmentation patterns. The elemental compositions of the degradation products and their MS fragments were evaluated using electrospray ionisation quadrupole time‐of‐flight tandem mass spectrometry (ESI‐QTOF‐MS/MS) which was then used to support the proposed fragmentation patterns. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   

2.
A semi‐quantitative method of mass spectrometry (MS) has been described for the analysis of metabolites of aconitine by rat intestinal bacteria at different pH. At pH 7.0, the rat intestinal bacteria exhibit optimal activity for the metabolism of aconitine. A high‐performance liquid chromatography‐electrospray ionization multiple‐stage mass spectrometry (HPLC/ESI‐MSn) method has been applied to investigate the characteristic product ions of metabolites. Then, the logical fragmentation pathways of metabolites have been proposed. By comparing the retention time (tR) of HPLC and the ESI‐MSn data with the data of standard compounds and reports from literature, ten metabolites have been identified and a distinctive metabolite (15‐deoxyaconitine) has been deduced first time. The experimental results demonstrate that HPLC/ESI‐MSn is a specific and useful method for the identification of metabolites of aconitine. Also, in the present paper, the HPLC‐MS method was introduced to determine the synthetical metabolite prior to the study of the toxicity by the method of Bliss.  相似文献   

3.
Fast and efficient ultra‐performance liquid chromatography/tandem mass spectrometry (UPLC/MS/MS) analysis of short interfering RNA oligonucleotides was used for identity confirmation of the target sequence‐related impurities. Multiple truncated oligonucleotides and metabolites were identified based on the accurate mass, and their presumed sequence was confirmed by MS/MS and MSE (alternating low and elevated collision energy scanning modes) methods. Based on the resulting fragmentation of native and chemically modified oligonucleotides, it was found that the MSE technique is as efficient as the traditional MS/MS method, yet MSE is more general, faster, and capable of producing higher signal intensities of fragment ions. Fragmentation patterns of modified oligonucleotides were investigated using RNA 2′‐ribose substitutions, phosphorothioate RNA, and LNA modifications. The developed sequence confirmation method that uses the MSE approach was applied to the analysis of in vitro hydrolyzed RNA oligonucleotide. The target RNA and metabolites, including the structural isomers, were resolved by UPLC, and their identity was confirmed by MSE. Simultaneous RNA truncations from both termini were observed. The UPLC quadrupole time‐of‐flight (QTOF) MS/MS and MSE methods were shown to be an effective tool for the analysis and sequence confirmation of complex oligonucleotide mixtures. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   

4.
A simple method based on liquid chromatography coupled with diode array detection and electrospray ionization mass spectrometry (LC‐DAD‐ESI‐MS) was developed for the quality assessment of Cortex Phellodendri (CP), which was mainly derived from two species of Phellodendron chinense Schneid and Phellodendron amurense Rupr. Total 41 compounds, including 14 phenols, 24 alkaloids and three liminoidal triterpenes were identified or tentatively characterized from the 75% methanol extract of CP samples by online ESI‐MSn fragmentation and UV spectra analysis. Among them, two phenols and six alkaloids were simultaneously quantified using HPLC‐DAD method. The validated HPLC‐DAD method showed a good linearity, precision, repeatability and accuracy for the quantification of eight marker compounds. Furthermore, the plausible fragmentation pathway of the representative compounds were proposed in the present study. The differences of the chemical constituents content and the comprehensive HPLC profiles between the two CP species using LC‐DAD‐ESI‐MS method are reported for the first time, indicating that the CP drugs from different resources should be used separately in the clinic. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   

5.
The ginsenosides Rb1 ( 3 ) and Rg1 ( 4 ) isolated from Panax ginseng were enzymatically modified with galactosyltransferase to furnish new derivatives carrying galactose units in one or both sugar chains at position C(20) and/or C(3) or C(6) of the protopanaxadiol and protopanaxatriol aglycones 1 and 2 , respectively. To determine the linkage position(s) of the introduced galactose unit(s), an electrospray‐ionization MS analysis with consecutive fragmentation steps (ESI‐MSn) was carried out using an ion‐trap mass spectrometer (Figs. 2 and 3). It was shown that both sugar moieties, located at different positions of the protopanaxadiol and protopanaxatriol aglycone, can be easily differentiated and analyzed in the subsequent fragmentation steps. Collision‐induced dissociation (CID) of the Na+‐ionized molecule (MS2) leads to cleavage of the most labile O−C(20) glycosidic bond, liberating the C(20) oligosaccharide fragment ion that can be analyzed in a subsequent fragmentation step (MS3). MS3 of the C(20) monodeglycosylated ginsenoside leads to cleavage of the second sugar moiety, allowing structure analysis of this fragment ion (MS4). By this method, the linkages of the monosaccharides and branching positions can be rapidly determined using only a few μl of a 10−5 M sample solution.  相似文献   

6.
Electrospray ionization triple quadrupole mass spectrometry (ESI‐TSQ‐MS) and electrospray ionization Fourier transform ion cyclotron resonance mass spectrometry (ESI‐FTICR‐MS) were used to investigate the interesting gas‐phase reactions of the cationic iron (Fe) complexes of 2‐pyrimidinyloxy‐N‐arylbenzylamines (1–6), which are generated by ESI when mixing their methanolic solutions. Further studies of these Fe complexes by collision‐induced dissociation (CID) show that Fe(III) complexes undergo an interesting gas‐phase single electron transfer (SET) reaction to give 1?+–6?+,with loss of neutral FeCl2, whereas Fe(II) can catalyze gas‐phase Smiles rearrangement reactions of compounds 1–6. By using different Fe(II)X2 salts (X = Cl or Br) with a set of reactants, the role of the counterion (X?) and the structure effect of the reactants on Fe(II)‐catalyzed gas‐phase Smiles rearrangement reactions are studied. Evidence obtained from by TSQ‐MS and FTICR‐MS experiments, hydrogen/deuterium (H/D) exchange experiments and theoretical computations supported some unique gas‐phase chemistries initiated by introduction of Fe(II) into 1. Importantly, by comparing the distinct gas‐phase reaction results of the cationic Fe(III) complexes with those of Fe(II) complexes, the charge state effects of iron on the gas‐phase chemistries of Fe complexes are revealed. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   

7.
二肽衍生物的电喷雾质谱研究   总被引:1,自引:0,他引:1  
基于HIV整合酶核心结构域,合成了以HIV整合酶为靶标的二肽衍生物,采用多级质谱技术(二级、三级)研究二肽衍生物在质谱条件下的化学键断裂途径,发现主要的断裂方式为:氨基与羰基间的NH-CO键的断裂以及N-(苯并噻唑-2-基)甲酰氨基与亚甲基间的CO-C间的断裂。  相似文献   

8.
The fragmentation mechanism of D-glucose was investigated in detail by two different fragmentation techniques, namely, collision-induced dissociation (CID) and infrared multiphoton dissociation (IRMPD) using all six 13C-labeled isotopomers and 2H-labeled isotopomers. For both CID and IRMPD energy-resolved measurements were carried out. Individual fragmentation pathways were studied at MS2 and MS3 levels. Additionally, we have developed an HPLC-tandem MS method to separate the anomers of D-glucose using a HILIC column and investigated their fragmentation patterns individually. We propose a complete fragmentation landscape of D-glucose, demonstrating that a rather simple multifunctional molecule displays extreme complexity in gas phase dissociation, following multiple parallel fragmentation routes yielding a total of 23 distinct fragment ions. The results allowed a detailed formulation of the complex fragmentation mechanism of D-glucose. The results have immediate consequences for the full structure analysis of complex carbohydrates.  相似文献   

9.
The mass spectrometric (MS) analysis of flavone di‐C‐glycosides has been a difficult task due to pure standards being unavailable commercially and to that the reported relative intensities of some diagnostic ions varied with MS instruments. In this study, five flavone di‐C‐glycoside standards from Viola yedoensis have been systematically studied by high performance liquid chromatography‐electrospray ionization‐tandem ion trap mass spectrometry (HPLC‐ESI‐IT‐MSn) in the negative ion mode to analyze their fragmentation patterns. A new MS2 and MS3 hierarchical fragmentation for the identification of the sugar nature (hexoses or pentoses) at C‐6 and C‐8 is presented based on previously established rules of fragmentation. Here, for the first time, we report that the MS2 and MS3 structure‐diagnostic fragments about the glycosylation types and positions are highly dependent on the configuration of the sugars at C‐6 and C‐8. The base peak (0,2X10,2X2? ion) in MS3 spectra of di‐C‐glycosides could be used as a diagnostic ion for flavone aglycones. These newly proposed fragmentation behaviors have been successfully applied to the characterization of flavone di‐C‐glycosides found in V. yedoensis. A total of 35 flavonoid glycosides, including 1 flavone mono‐C‐hexoside, 2 flavone 6,8‐di‐C‐hexosides, 11 flavone 6,8‐di‐C‐pentosides, 13 flavone 6,8‐C‐hexosyl‐C‐pentosides, 5 acetylated flavone C‐glycosides and 3 flavonol O‐glycosides, were identified or tentatively identified on the base of their UV profiles, MS and MSn (n = 5) data, or by comparing with reference substances. Among these, the acetylated flavone C‐glycosides were reported from V. yedoensis for the first time. Copyright © 2014 John Wiley & Sons, Ltd.  相似文献   

10.
Triterpenoid saponins are the major bioactive constituents of Panax notoginseng. In the study reported here, the fragmentation behavior of triterpenoid saponins from P. notoginseng was investigated by electrospray ionization tandem mass spectrometry (ESI‐MSn)and high‐performance liquid chromatography coupled with electrospray ionization tandem mass spectrometry (HPLC/ESI‐MSn). Analyses revealed that product ions from glycosidic and cross‐ring cleavages can give a wealth of structural information regarding the nature of the aglycone, sugar types, the sequence and linkage information of sugar units. It is noted that different glycosylation positions remarkably influenced the fragmentation behaviors, which could assist in the differentiation of saponin analogues. To rationalize this characteristic, the collision energy required for various glycosidic cleavages was investigated. According to the summarized fragmentation rules, identification of triterpenoid saponins from the roots of P. notoginseng could be fulfilled, even when reference standards were unavailable. Furthermore, minor and trace constituents were enriched and detected by eliminating the major constituents in one of the saponin fractions. As a result, a total of 151 saponins, including 56 new trace ones, were identified or tentatively characterized from saponin fractions based on their retention times, HPLC/HRMS, HPLC/ESI‐MSn fragmentation behaviors and comparison with literature data. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   

11.
Four flavonoids, isoastilbin, astilbin, isoengelitin, and engelitin were isolated and purified simultaneously from Smilacis Glabrae Roxb. for the first time by high performance counter‐current chromatography using a system consisting of n‐hexane–n‐butanol–water (1:2:3, v/v/v). A total of 392.6 mg of astilbin, 71.4 mg of isoastilbin, 47.4 mg of engelitin, and 10.3 mg of isoengelitin were purified from 1.89 g of the ethyl acetate extract of Smilacis Glabrae Roxb. in six runs, each at over 94.51% purity as determined by HPLC. The structures of the four compounds were identified by their retention time, the LC‐ESI‐MSn in the negative ion mode, and confirmed by 1H‐NMR experiments. The characteristic LC‐ESI‐MS fragmentation patterns of the four compounds were discussed.  相似文献   

12.
1‐Hydroxymethylene‐1,1‐bisphosphonic acids (or bisphosphonates) are compounds that have interesting pharmacological applications. However, few mass spectrometric investigations have been carried out to determine their fragmentation patterns. Herein, we evaluated different matrices for the study by matrix‐assisted laser desorption/ionization time‐of‐flight mass spectrometry (MALDI‐TOFMS) of the formation and fragmentation of the protonated, the cationized (MNa+ and MK+) and the deprotonated bisphosphonates. Some in‐source fragmentations were observed both in positive and in negative ion modes. The fragmentation patterns obtained in post‐source decay mode are also discussed. In contrast to previous electrospray ionization/multi‐stage mass spectrometry (ESI‐MSn) studies, some new fragmentation pathways were deduced and the effects of alkali ions on the fragmentation patterns were shown. The results summarized here completed the data previously recorded by ESI‐MSn and could be used for the characterization of bisphosphonates as alkali complexes in biological mixtures. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   

13.
Two new series of Boc‐N‐α,δ‐/δ,α‐ and β,δ‐/δ,β‐hybrid peptides containing repeats of L ‐Ala‐δ5‐Caa/δ5‐Caa‐L ‐Ala and β3‐Caa‐δ5‐Caa/δ5‐Caa‐β3‐Caa (L ‐Ala = L ‐alanine, Caa = C‐linked carbo amino acid derived from D ‐xylose) have been differentiated by both positive and negative ion electrospray ionization (ESI) ion trap tandem mass spectrometry (MS/MS). MSn spectra of protonated isomeric peptides produce characteristic fragmentation involving the peptide backbone, the Boc‐group, and the side chain. The dipeptide positional isomers are differentiated by the collision‐induced dissociation (CID) of the protonated peptides. The loss of 2‐methylprop‐1‐ene is more pronounced for Boc‐NH‐L ‐Ala‐δ‐Caa‐OCH3 (1), whereas it is totally absent for its positional isomer Boc‐NH‐δ‐Caa‐L ‐Ala‐OCH3 (7), instead it shows significant loss of t‐butanol. On the other hand, second isomeric pair shows significant loss of t‐butanol and loss of acetone for Boc‐NH‐δ‐Caa‐β‐Caa‐OCH3 (18), whereas these are insignificant for its positional isomer Boc‐NH‐β‐Caa‐δ‐Caa‐OCH3 (13). The tetra‐ and hexapeptide positional isomers also show significant differences in MS2 and MS3 CID spectra. It is observed that ‘b’ ions are abundant when oxazolone structures are formed through five‐membered cyclic transition state and cyclization process for larger ‘b’ ions led to its insignificant abundance. However, b1+ ion is formed in case of δ,α‐dipeptide that may have a six‐membered substituted piperidone ion structure. Furthermore, ESI negative ion MS/MS has also been found to be useful for differentiating these isomeric peptide acids. Thus, the results of MS/MS of pairs of di‐, tetra‐, and hexapeptide positional isomers provide peptide sequencing information and distinguish the positional isomers. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   

14.
Forsythia suspensa contains C6‐C2 glucoside conjugates (CCGCs) that are chemically unstable, thereby hindering their isolation and purification. In the present study, ultra‐performance liquid chromatography‐quadrupole time‐of‐flight mass spectrometry (UPLC‐QTOF) was utilized to screen and identify unstable CCGCs in the fruits and leaves of F. suspensa without any tedious isolation and purified process based on independent information acquisition (also called MSE) and individual MS/MS experiments. Diagnostic product ion filtering (DPIF) was further applied to mine unknown analogs in MSE high energy levels based on characteristic m/z of key substructures. A modified nomenclature for CCGCs is hereby proposed to facilitate discussions. Possible fragmentation pathways of major types of known CCGCs were proposed and used for deducing their structures. A total of 8 potentially new CCGCs were discovered and initially identified. The accuracy of their identification was further verified by structural elucidation of 3 unstable CCGCs isolated from the fruits of F. suspensa using 1D and 2D‐NMR spectroscopy. The established UPLC‐QTOF‐MSE‐based DPIF technique facilitates the rapid discovery and direct identification of unstable CCGCs in fruits and leaves of F. suspensa .  相似文献   

15.
A rapid and sensitive method for the identification and quantification of 10‐hydroxycamptothecine (HCPT) in Camptotheca acuminata Decne is described. The HCPT standard solution was directly infused into the ion trap mass spectrometers (IT/MS) for collecting the MSn spectra. The electrospray ionization (ESI) mass spectral fragmentation pathway of HCPT was proposed and the ESI‐MSn fragmentation behavior of HCPT was deduced in detail. The major fragment ions of HCPT were confirmed by MSn in both negative ion and positive ion mode. The possible main cleavage pathway of fragment ions was studied. Quantification of HCPT was assigned in negative‐ion mode at a product ion at m/z 363 → 319 by LC‐MS. The LC‐MS method was validated for linearity, sensitivity, accuracy and precision, and then used to determine the content of the HCPT. Lastly, the LC‐MS method was successfully applied to determine HCPT in real samples of Camptotheca acuminate Decne and its medicinal preparation in the first time. Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   

16.
应用高效液相色谱质谱联用方法(HPLC-ESI-MSn)研究了甘草提取物中的七种化合物,四种三萜类化合物和三种黄酮类化合物。通过多极串联质谱(ESI-MSn)和多极串联傅里叶变换回旋共振质谱(FT-ICR-MSn)法研究了它们的碎裂规律。通过比较保留时间和质谱数据对上述七种化合物进行了归属,并阐述了其可能的质谱裂解途径。以上结果显示ESI-MSn和FT-ICR-MSn是非常有效的分析三萜类化合物和黄酮类化合物结构的工具。  相似文献   

17.
Triacylglycerols (TAGs) provide a challenge for mass spectrometry (MS) analysis because of their complexity. In particular, for dietary, nutritional and metabolic purposes, the positional placement of fatty acids on the glycerol backbone of TAGs is a crucial aspect. To solve this problem, we have investigated the TAGs' fragmentation patterns using an ion trap mass spectrometer. A series of pure regioisomeric pairs of TAGs (POP/PPO, POO/OPO and OSO/SOO) were cationized by Ag+ after their separation by non‐aqueous reversed‐phase liquid chromatography (NARP‐LC) before MS to improve MS sensitivity. Electrospray ionization–MS (ESI‐MS) conditions were optimized in order to produce characteristic [M + Ag + AgNO3]+ ions from each TAG, which were then fragmented to produce MS/MS spectra and then fragmented further to produce up to MS5 spectra. The observation of ions produced by LC‐MS5 of on‐line Ag+‐cationized TAG provided unambiguous information on the fatty acid distribution on the glycerol backbone. These strategies of MS to MS5 experiments were applied to identify components and to determine the regiospecificity of TAG within a complex mixture of lipids in natural oils. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   

18.
The zwitterionic drug 3‐methyl‐9‐(2‐oxa‐2λ5‐2H‐1,3,2‐oxazaphosphorine‐2‐cyclohexyl)‐3,6,9‐triazaspiro[5,5]undecane chloride (SLXM‐2) is a novel synthetic compound which has shown anticancer activity and low toxicity in vivo. In this study, the various gas‐phase fragmentation routes were analyzed by electrospray ionization mass spectrometry (positive ion mode) in conjunction with tandem mass spectrometry (ESI‐MSn) for the first time. In ESI‐MS the fragment ion at m/z 289 (base peak) was formed by loss of the chlorine anion from the zwitterionic precursor SLXM‐2. The fragment ion at m/z 232 was formed from the ion at m/z 289 by loss of 1‐methylaziridine. The detailed gas‐phase collision‐induced dissociation (CID) fragmentation mechanisms obtained from the various precursor ions extracted from the zwitterionic SLXM‐2 drug was obtained by tandem mass spectrometry analyses. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   

19.
Benzylisoquinoline alkaloids (BIAs) have profound implications on human health owing to their potent pharmacological properties. Notable naturally occurring BIAs are the narcotic analgesics morphine, the cough suppressant codeine, the potential anticancer drug noscapine, the muscle relaxant papaverine, and the antimicrobial sanguinarine, all of which are produced in opium poppy (Papaver somniferum). Thebaine, an intermediate in the biosynthesis of codeine and morphine, is used in the manufacture of semisynthetic opiates, including oxycodone and naloxone. As the only commercial source of pharmaceutical opiates, opium poppy has been the focus of considerable research to understand BIA metabolism in the plant. The elucidation of several BIA biosynthetic pathways has enabled the development of synthetic biology platforms aimed at the alternative commercial production of valuable phytochemicals in microorganisms. The detection and identification of BIA pathway products and intermediates in complex extracts is essential for the continuing advancement of research in plant specialized metabolism and microbial synthetic biology. Herein, we report the use of liquid chromatography coupled with linear trap quadrupole and high‐resolution Orbitrap multistage mass spectrometry to characterize 44 authentic BIAs using collision‐induced dissociation (CID), higher‐energy collisional dissociation (HCD), and pulsed Q collision‐induced dissociation (PQD) MS2 fragmentation, with MS2 CID followed by MS3 and MS4 fragmentation. Our deep library of diagnostic spectral data constitutes a valuable resource for BIAs identification. In addition, we identified 22 BIAs in opium poppy latex and roots extracts.  相似文献   

20.
Novel Cu 2+ and Fe 3+ chelates derived from L 1 were synthesized and characterized by single crystal X‐ray diffraction. The results indicate that the Fe (III) crystal, [Fe(L1‐H)Cl2], has an orthorhombic structure of the type pc2b while the dimeric Cu (II) crystal, [Cu(L1‐H)Cl … ClCu(L1‐H)], has a monoclinic with space group Cc. X‐ray diffraction and spectroscopic studies revealed that L 1 acts as monobasic tetradentate with octahedral geometry in Fe (III) crystal while it behaves as dibasic tetradentate with distorted‐octahedral in the Cu (II) crystal. Also, the two chelates were characterized by spectral, magnetic and thermal analyses. DFT parameters were used to prove the liberation of a proton from COOH rather than NH groups. The kinetic and thermodynamic parameters of Fe (III) chelate were determined by Coats‐Redfern and Horowitz‐Metzger methods. Cyclic voltammogram provides information about the oxidation states of Cu (II) and Fe (III) chelates. Antitumor activity against Epitheliod carcinoma (Hela), breast cancer (MCF‐7) and antibacterial activities of chelates were investigated.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号