首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
A novel palladium solid‐phase microextraction coating was fabricated on a stainless‐steel wire by a simple in situ oxidation–reduction process. The palladium coating exhibited a rough microscaled surface and its thickness was about 2 μm. Preparation conditions (reaction time and concentration of palladium chloride and hydrochloric acid) were optimized in detail to achieve sufficient extraction efficiency. Extraction properties of the fiber were investigated by direct immersion solid‐phase microextraction of several polycyclic aromatic hydrocarbons and phthalate esters in aqueous samples. The extracted analytes were transferred into a gas chromatography system by thermal desorption. The effect of extraction and desorption conditions on extraction efficiency were investigated. Under the optimum conditions, good linearity was obtained and correlation coefficients between 0.9908 and 0.9990 were obtained. Limits of detection were 0.05–0.10 μg/L for polycyclic aromatic hydrocarbons and 0.3 μg/L for phthalate esters. Their recoveries for real aqueous samples were in the range from 97.1 to 121% and from 89.1 to 108%, respectively. The intra‐ and interday tests were also investigated with three different addition levels, and satisfactory results were also obtained.  相似文献   

2.
This article introduces a simple, rapid, and reliable solid‐phase microextraction (SPME) method coupled with GC‐MS for the quantitative determination of 16 polycyclic aromatic hydrocarbons in water. In this study, the Taguchi experimental design was used to optimize extraction conditions of polycyclic aromatic hydrocarbons using SPME method to obtain highly enriched analytes. Consequently, quantitative determination of polycyclic aromatic hydrocarbons in water was achieved by GC‐MS technique. The selected parameters affecting enrichment of polycyclic aromatic hydrocarbons were sample extraction time, stirring speed, temperature, ionic strength, and pH. The study revealed that optimal operating conditions were found to be 90‐min extraction time, 1400 rpm stirring speed, and 60°C sample temperature. The effect of ionic strength and pH were shown to be insignificant. Optimized conditions were also reevaluated by placing the 16 polycyclic aromatic hydrocarbons into several subgroups based on their molecular weight. The extraction efficiency of polycyclic aromatic hydrocarbons with low molecular weight was shown to be a function of only the extracting temperature. Satisfactory results were obtained for linearity (0.983–0.999), detection limits (2.67–18.02 ng/L), accuracy (71.2–99.3%), and precision (4.3–13.5%). The optimum conditions reported by other design approaches were evaluated and generalized optimum conditions were suggested.  相似文献   

3.
A polymeric ionic liquid modified stainless steel wire for solid‐phase microextraction was reported. Mercaptopropyl‐functionalized stainless steel wire that was formed by co‐condensation of tetramethoxysilane and 3‐mercaptopropyltrimethoxysilane via a sol‐gel process, which is followed by in situ surface radical chain‐transfer polymerization of 1‐vinyl‐3‐octylimidazolium hexafluorophosphate to result in polymeric ionic liquid modified stainless steel wire. The fiber surface was characterized by field emission scanning electron microscope equipped with energy dispersive X‐ray analysis. Coupled with GC, extraction performance of the fiber was tested with phenols and polycyclic aromatic hydrocarbons as model analytes. Effects of extraction and desorption conditions were investigated systematically in our work. RSDs for single‐fiber repeatability and fiber‐to‐fiber reproducibility were less than 7.34 and 16.82%, respectively. The calibration curves were linear in a wide range for all analytes and the detection limits were in the range of 10–60 ng L?1. Two real water samples from the Yellow River and local waterworks were applied to test the as‐established solid‐phase microextraction–GC method with the recoveries of samples spiked at 10 μg L?1 ranged from 83.35 to 119.24%. The fiber not only exhibited excellent extraction efficiency, but also very good rigidity, stability and durability.  相似文献   

4.
A method for the determination of polycyclic aromatic hydrocarbons (PAHs) in soil samples using ultrasonic‐assisted extraction with internal surrogates combined with solid‐phase microextraction and GC‐MS has been developed. Five kinds of commercial solid‐phase microextraction fibers, 100 μm PDMS, 30 μm PDMS, 65 μm PDMS/DVB, 50 μm DVB/CAR/PDMS and 85 μm PA, were compared to choose the optimal SPME fiber for extraction of PAHs. One hundred micrometers of PDMS fiber was found to be more suitable for the determination of PAHs due to its wider linear range, better repeatability, lower detection and more satisfactory efficacy than the other fibers. Under the recommended conditions, 100 μm PDMS fiber could provide low nanogram level detection limits with correlation coefficient greater than 0.98. The method was also applied to determine PAHs in a spiked soil sample, obtaining recoveries higher than 79.3%. A field study with naturally contaminated samples from local contaminated sites was carried out. The proposed method was found to be a reliable, inexpensive and simple preparation method for quantitative determination of 16 PAHs in soil samples.  相似文献   

5.
A fiber‐in‐tube solid‐phase microextraction device based on a gold‐functionalized stainless‐steel wire and tube was developed and characterized by scanning electron microscopy and energy dispersive X‐ray spectroscopy. In combination with high‐performance liquid chromatography, it was evaluated using six polycyclic aromatic hydrocarbons as model analytes. Important parameters including sampling rate, sample volume, organic solvent content and desorption time were investigated. Under optimized conditions, an online analysis method was established. The linearity was in the range of 0.15–50 μg/L with correlation coefficients ranging from 0.9989 to 0.9999, and limits of detection ranged from 0.05 to 0.1 μg/L. The method was applied to determine model analytes in mosquito‐repellent incense ash and river water samples, with recoveries in the range of 85–120%.  相似文献   

6.
A highly porous fiber coated with polythiophene/hexagonally ordered silica nanocomposite was prepared for solid‐phase microextraction (SPME). The prepared nanomaterial was immobilized onto a stainless‐steel wire for the fabrication of the SPME fiber. Polythiophene/hexagonally ordered silica nanocomposite fibers were used for the extraction of some polycyclic aromatic hydrocarbons from water samples. The extracted analytes were transferred to the injection port of a gas chromatograph using a laboratory‐designed SPME device. The results obtained prove the ability of the polythiophene/hexagonally ordered silica material as a new fiber for the sampling of organic compounds from water samples. This behavior is due most probably to the increased surface area of the polythiophene/hexagonally ordered silica nanocomposite. A one‐at‐a‐time optimization strategy was applied for optimizing the important extraction parameters such as extraction temperature, extraction time, ionic strength, stirring rate, and desorption temperature and time. Under the optimum conditions, the LOD of the proposed method is 0.1–3 pg/mL for analysis of polycyclic aromatic hydrocarbons from aqueous samples, and the calibration graphs were linear in a concentration range of 0.001–20 ng/mL (R2 > 0.990) for most of the polycyclic aromatic hydrocarbons. The single fiber repeatability and fiber‐to‐fiber reproducibility were less than 8.6 and 19.1% (n = 5), respectively.  相似文献   

7.
A novel microextraction method, ordered mesoporous carbon reinforced hollow fiber liquid‐phase microextraction coupled with high‐performance liquid chromatography and fluorescence detection, was developed for the determination of some organic pollutants in water samples. Four polycyclic aromatic hydrocarbons (fluorene, anthracene, fluoranthene, and pyrene) were selected to validate this new method. Main parameters that could influence the extraction efficiency such as extraction time, fiber length, stirring rate, the type of the extraction solvent, pH value, the concentration of ordered mesoporous carbon, and salt effect were optimized. Under the optimal extraction conditions, good linearity was observed in the range of 2–1000 ng/L, with the correlation coefficients of 0.9954–0.9986. The recoveries for the spiked samples were in the range of 88.96–100.17%. The limits of detection of the method were 0.4–4 ng/L. The relative standard deviations varied from 4.2–5.9%. The results demonstrated that the newly developed method was an efficient pretreatment and enrichment procedure for the determination of polycyclic aromatic hydrocarbons in environmental water samples.  相似文献   

8.
In this work, a graphene composite was coated onto etched stainless‐steel wire through a sol–gel technique and it was used as a solid‐phase microextraction (SPME) fiber. The prepared fiber was characterized by SEM, which revealed that the fiber had a highly porous structure. The application of the fiber was evaluated through the headspace SPME of five halogenated aromatic hydrocarbons (chlorobenzene, bromobenzene, 1,3‐dichlorobenzene, 1,2‐dichlorobenzene, and 1,2,4‐trichlorobenzene) in water samples followed by GC with flame ionization detection. The main factors influencing the extraction efficiency, including headspace volume, extraction time, extraction temperature, stirring rate, ionic strength of sample solution, and desorption conditions, were studied and optimized. Under the optimum conditions, the linearity of the method ranged from 2.5 to 800.0 μg/L for 1,2,4‐trichlorobenzene and from 2.5 to 500.0 μg/L for chlorobenzene, bromobenzene, 1,3‐dichlorobenzene, and 1,2‐dichlorobenzene, with the correlation coefficients (r) ranging from 0.9962 to 0.9980, respectively. The LODs (S/N = 3) of the method for the analytes were in the range between 0.5 and 1.0 μg/L. The recoveries of the method for the analytes obtained for the spiked water samples at 50.0 and 250.0 μg/L were from 76.0 to 104.0%.  相似文献   

9.
A sensitive method for the extraction and determination of polycyclic aromatic hydrocarbons (PAHs) using alcoholic-assisted dispersive liquid-liquid microextraction (AA-DLLME) and HPLC was developed. The extraction procedure was based on alcoholic solvents for both extraction and dispersive solvents. The effective parameters (type and volume of extraction and dispersive solvents, amount of salt and stirring time) on the extraction recovery were studied and optimized utilizing factorial design (FD) and central composite design (CCD). The best recovery was achieved by FD using 2-ethyl-1-hexanol as the extraction solvent and methanol as the dispersive solvent. The results showed that volume of dispersive solvent and stirring time had no effect on the recovery of PAHs. The optimized conditions were 145 μL of 2-ethyl-1-hexanol as the extraction solvent and 4.2% w/v of salt (NaCl) in sample solution. The enrichment factors of PAHs were in the range of 310-325 with limits of detection of 0.002-0.8 ng/mL. The linearity was 0.01-800 ng/mL for different PAHs. The relative standard deviation (RSD) for intra- and inter-day of extraction of PAHs were in the range of 1.7-7.0 and 5.6-7.3, respectively, for five measurements. The method was also successfully applied for the determination of PAHs in environmental water samples.  相似文献   

10.
A novel chemically bonded graphene oxide/fused-silica fiber was prepared and applied in solid-phase microextraction of six polycyclic aromatic hydrocarbons from water samples coupled with gas chromatography. It exhibited high extraction efficiency and excellent stability. Effects of extraction time, extraction temperature, ionic strength, stirring rate and desorption conditions were investigated and optimized in our work. Detection limits to the six polycyclic aromatic hydrocarbons were less than 0.08 μg/L, and their calibration curves were all linear (R(2)≥0.9954) in the range from 0.05 to 200 μg/L. Single fiber repeatability and fiber-to-fiber reproducibility were less than 6.13 and 15.87%, respectively. This novel fiber was then utilized to analyze two real water samples from the Yellow River and local waterworks, and the recoveries of samples spiked at 1 and 10 μg/L ranged from 84.48 to 118.24%. Compared with other coating materials, this graphene oxide-coated fiber showed many advantages: wide linear range, low detection limit, and good stability in acid, alkali, organic solutions and at high temperature.  相似文献   

11.
An inorganic–organic hybrid nanocomposite (zinc oxide/polypyrrole) that represents a novel kind of coating for in‐tube solid‐phase microextraction is reported. The composite coating was prepared by a facile electrochemical polymerization strategy on the inner surface of a stainless‐steel tube. Based on the coated tube, a novel online in‐tube solid‐phase microextraction with liquid chromatography and mass spectrometry method was developed and applied for the extraction of three monohydroxy polycyclic aromatic hydrocarbons in human urine. The coating displayed good extraction ability toward monohydroxy polycyclic aromatic hydrocarbons. In addition, long lifespan, excellent stability, and good compression resistance were also obtained for the coating. The experimental conditions affecting the extraction were optimized systematically. Under the optimal conditions, the limits of detection and quantification were in the range of 0.039–0.050 and 0.130–0.167 ng/mL, respectively. Good linearity (0.2–100 ng/mL) was obtained with correlation coefficients larger than 0.9967. The repeatability, expressed as relative standard deviation, ranged between 2.5% and 9.4%. The method offered the advantage of process simplicity, rapidity, automation, and sensitivity in the analysis of human urinary monohydroxy polycyclic aromatic hydrocarbons in two different cities of Hubei province. An acceptable recovery of monohydroxy polycyclic aromatic hydrocarbons (64–122%) represented the additional attractive features of the method in real urine analysis.  相似文献   

12.
A novel microextraction method making use of commercial polymer fiber as sorbent, coupled with high-performance liquid chromatography-fluorescence detection for the determination of polycyclic aromatic hydrocarbons (PAHs) in water has been developed. In this technique, the extraction device was simply a length (8 cm) of a strand of commercial polymer fiber, Kevlar (each strand consisted of 1000 filaments, each of diameter ca. 9.23 μm), that was allowed to tumble freely in the aqueous sample solution during extraction. The extracted analytes were desorbed ultrasonically before the extract was injected into HPLC system for analysis. Extraction parameters such as extraction time, desorption time, type of desorption solvent and sample volume were optimized. Each fiber could be used for up to 50 extractions and the method showed good precision, reproducibility and linear response within a concentration range 0.05–5.00 μg L−1 with correlation coefficients of up to 0.9998. Limits of detection between 0.4 and 4.4 ng L−1 for seven PAHs could be achieved. The relative standard deviations (n = 3) of this technique were between 2.9% and 12.1%.  相似文献   

13.
For the first time, Vacuum Assisted Headspace Solid Phase Microextraction (Vac-HSSPME) is used for the recovery of polycyclic aromatic hydrocarbons (PAHs) from solid matrices. The procedure was investigated both theoretically and experimentally. According to the theory, reducing the total pressure increases the vapor flux of chemicals at the soil surface, and hence improves HSSPME extraction kinetics. Vac-HSSPME sampling could be further enhanced by adding water as a modifier and creating a slurry mixture. For these soil-water mixtures, reduced pressure conditions may increase the volatilization rates of compounds with a low KH present in the aqueous phase of the slurry mixture and result in a faster HSSPME extraction process. Nevertheless, analyte desorption from soil to water may become a rate-limiting step when significant depletion of the aqueous analyte concentration takes place during Vac-HSSPME. Sand samples spiked with PAHs were used as simple solid matrices and the effect of different experimental parameters was investigated (extraction temperature, modifiers and extraction time). Vac-HSSPME sampling of dry spiked sand samples provided the first experimental evidence of the positive combined effect of reduced pressure and temperature on HSSPME. Although adding 2 mL of water as a modifier improved Vac-HSSPME, humidity decreased the amount of naphthalene extracted at equilibrium as well as impaired extraction of all analytes at elevated sampling temperatures. Within short HSSPME sampling times and under mild sampling temperatures, Vac-HSSPME yielded linear calibration curves in the range of 1–400 ng g−1 and, with the exception of fluorene, regression coefficients were found higher than 0.99. The limits of detection for spiked sand samples ranged from 0.003 to 0.233 ng g−1 and repeatability from 4.3 to 10 %. Finally, the amount of PAHs extracted from spiked soil samples was smaller compared to spiked sand samples, confirming that soil could bind target analytes more strongly and thus decrease the readily available fraction of target analytes.  相似文献   

14.
A new technique for the analysis of volatile aromatic hydrocarbons by combining liquid-liquid microextraction with solid phase microextraction has been developed. The analytes were extracted from aqueous samples by an immobilized polydimethylsiloxane fiber assisted by the droplets of an appropriate organic solvent. Benzene, toluene, ethylbenzene, and o-xylene were used as target analytes. The main factors potentially affecting the microextraction such as the nature and the volume of organic solvent, polydimethylsiloxane (PDMS) swelling, extraction time, agitation, temperature, and salts were optimized. The method requires a very low consumption of organic solvent. The relative enrichment factor is in the range of 7.1-32.4 for extraction in the presence of dichloromethane at an optimum volume of 18 μL mL(-1) of aqueous sample. This enhancement over regular polydimethylsiloxane fiber is primarily the result of the fiber swelling and of a stable thin layer of organic solvent attached to the surface of the PDMS fiber. The limit of detection ranges from 0.02 to 0.65 ng mL(-1) for the target compounds using a 7-μm bonded polydimethylsiloxane coating and a flame ionization detector. The validity of this method is demonstrated by the analysis of a real waste water sample.  相似文献   

15.
A dispersive liquid–liquid microextraction method using a lighter‐than‐water phosphonium‐based ionic liquid for the extraction of 16 polycyclic aromatic hydrocarbons from water samples has been developed. The extracted compounds were analyzed by liquid chromatography coupled to fluorescence/diode array detectors. The effects of several experimental parameters on the extraction efficiency, such as type and volume of ionic liquid and disperser solvent, type and concentration of salt in the aqueous phase and extraction time, were investigated and optimized. Three phosphonium‐based ionic liquids were assayed, obtaining larger extraction efficiencies when trihexyl‐(tetradecyl)phosphonium bromide was used. The optimized methodology requires a few microliters of a lighter‐than‐water phosphonium‐based ionic liquid, which allows an easy separation of the extraction solvent phase. The obtained limits of detection were between 0.02 and 0.56 μg/L, enrichment factors between 109 and 228, recoveries between 60 and 108%, trueness between 0.4 and 9.9% and reproducibility values between 3 and 12% were obtained. These figures of merit combined with the simplicity, rapidity and low cost of the analytical methodology indicate that this is a viable and convenient alternative to the methods reported in the literature. The developed method was used to analyze polycyclic aromatic hydrocarbons in river water samples.  相似文献   

16.
Given the potential risks of chlorinated polycyclic aromatic hydrocarbons, the analysis of their presence in water is very urgent. We have developed a novel procedure for determining chlorinated polycyclic aromatic hydrocarbons in water based on solid‐phase extraction coupled with gas chromatography and mass spectrometry. The extraction parameters of solid‐phase extraction were optimized in detail. Under the optimal conditions, the proposed method showed wide linear ranges (1.0–1000 ng/L) with correlation coefficients ranging from 0.9952 to 0.9998. The limits of detection and the limits of quantification were in the range of 0.015–0.591 and 0.045–1.502 ng/L, respectively. Recoveries ranged from 82.5 to 102.6% with relative standard deviations below 9.2%. The obtained method was applied successfully to the determination of chlorinated polycyclic aromatic hydrocarbons in real water samples. Most of the chlorinated polycyclic aromatic hydrocarbons were detected and 1‐monochloropyrene was predominant in the studied water samples. This is the first report of chlorinated polycyclic aromatic hydrocarbons in water samples in China. The toxic equivalency quotients of chlorinated polycyclic aromatic hydrocarbons in the studied tap water were 9.95 ng the toxic equivalency quotient m?3. 9,10‐Dichloroanthracene and 1‐monochloropyrene accounted for the majority of the total toxic equivalency quotients of chlorinated polycyclic aromatic hydrocarbons in tap water.  相似文献   

17.
Headspace solvent microextraction (HSME) was shown to be an efficient preconcentration method for extraction of some polycyclic aromatic hydrocarbons (PAHs) from aqueous sample solutions. A microdrop of 1-butanol (as extracting solvent) containing biphenyl (as internal standard) was used in this investigation. Extraction occurred by suspending a 3 μl drop of 1-butanol from the tip of a microsyringe fixed above the surface of solution in a sealed vial. After extraction for a preset time, the microdrop was retracted back into the syringe and injected directly into a GC injection port. The effects of nature of extracting solvent, microdrop and sample temperatures, stirring rate, microdrop and sample volumes, ionic strength and extraction time on HSME efficiency were investigated and optimized. Finally, the enrichment factor, dynamic linear range (DLR), limit of detection (LOD) and precision of the method were evaluated by water samples spiked with PAHs. The optimized procedure was successfully applied to the extraction and determination of PAHs in different water samples.  相似文献   

18.
A bonding method was developed for coating molybdenum oxides onto a steel wire substrate, which was used as a solid‐phase microextraction fiber, was coupled with gas chromatography. Based on the characterization, it is found that the as‐prepared molybdenum oxides material contained a nanobelt structure with a uniform size and good dispersibility. In addition, there were a large number of small protrusions on the surface of the nanobelts. These characteristics provided a large specific surface area for extraction. Molybdenum oxides exhibited a high extraction selectivity for polycyclic aromatic hydrocarbons owing to its moderate coordination. After the optimization of the factors, method detection limits of < 1.25 μg/L were achieved, and the calibration curves were linear within the range of 2–600 μg/L. In addition, repeatability was demonstrated, and the relative standard deviation < 6.4%. The molybdenum oxides coating had a high scratch resistance, which could effectively prevent coating wear and failure. Combined with the high thermal and chemical stability, the service life of the coating was improved and could be used 150 times without a significant reduction in the extraction performance. Finally, the as‐prepared fiber had a comparable extraction capacity and higher partition coefficients that those of commercial polyacrylate fibers.  相似文献   

19.
A novel, low‐cost and effective in‐needle solid‐phase microextraction device was developed for the enrichment of trace polycyclic aromatic hydrocarbons in water samples. The in‐needle solid‐phase microextraction device could be easily assembled by inserting hydrofluoric acid‐etched wires, which were used as adsorbent, into a 22‐gauge needle tube within spring supporters. Compared with the commercial solid‐phase microextraction fiber, the developed device has higher efficiency for the extraction of polycyclic aromatic hydrocarbons with four to six rings from water samples using the optimized extraction conditions. With gas chromatography equipped with a flame ionization detector, the limits of detection for the polycyclic aromatic hydrocarbons with four to six rings ranged from 0.0020 to 0.0067 ng/mL. The relative standard deviations for one needle and needle‐to‐needle extractions were in the range of 5.2–9.9% (n = 5) and 3.4–12.3% (n = 5), respectively. The spiked recoveries of the polycyclic aromatic hydrocarbons in tap water samples ranged from 73.2 to 95.4%. This in‐needle solid‐phase microextraction device could be a good field sampler because of the low sample loss over a long storage time.  相似文献   

20.
A new method of the determination polycyclic aromatic hydrocarbons (PAHs) in water samples was developed by continuous-flow microextraction (CFME) coupled with gas chromatography-mass spectrometry (GC-MS). In this experiment, 15 mL sample solution with no salt-added was flowed at the rate of 1.0 mL min−1 through 3 μL benzene as extraction solvent. Under the optimal extraction conditions, the developed method was found to yield a linear calibration curve in the concentration range from 0.05 to 15 ng mL−1. Furthermore, the accuracy and repeatability of the method were good by calculating from water samples spiked at known concentrations of PAHs, and the recovery of optimal method was satisfactory. The results showed that CFME was an efficient preconcentration method for extraction of PAHs from spiked water samples.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号