首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Rafael Grytz  Günther Meschke 《PAMM》2007,7(1):4080009-4080010
Biological tissues such as those involved in the eye, heart, veins or arteries are heterogeneous on one or another spatial scale and can undergo very large elastic strains. Frequently, these tissues are characterized by shell-like structures at the macroscopic scale and the physical material directions follow curvilinear paths. We consider a homogenized macro-continuum formulated in curvilinear convective coordinates with locally attached representative micro-structures. Micro-structures attached to different macroscopic points are assumed to be rotated counterparts according to the curvilinear path of the physical material directions at the macro-scale. The solution of such multi-scale problems according to the computational homogenization scheme [1, 2, 3] would need a different RVE at each macroscopic point. The goal of this paper is to use the same initial RVE at each macroscopic point by generalizing the computational homogenization scheme to a formulation considering different physical spaces at the micro- and macro-scale. The deformation and the reference frame of the micro-structure are assumed to be coupled with the local deformation and the local reference frame at the corresponding point of the macrocontinuum. For a consistent formulation of micro-macro transitions physical reference directions are defined on both scales, where the macroscopic one follows a curvilinear path. To formulate the generalized micro-macro transitions in absolute tensor notation the operations scale-up and scale-down are introduced. (© 2008 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   

2.
3.
To determine the mechanical behavior of material involving the martensitic phase transformation (for example, steels like 100Cr6), a representative volume element (RVE) model including phase transformation criterion is desireable at micromechanical approach. A framework combining the Eshelby's inclusion theory as well as continuum mechanics with phase-transformation (PT) critical condition at RVE model is presented briefly. And application of this model to estimate the critical aspect ratio of martensitic plate or lath inside homogeneneous stress field is also included, where the RVE can be under uniaxial tension/compression or pure shear loading case. (© 2005 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   

4.
Under consideration is a 2D-problem of elasticity theory for a body with a thin rigid inclusion. It is assumed that there is a delamination crack between the rigid inclusion and the elastic matrix. At the crack faces, the boundary conditions are set in the form of inequalities providing mutual nonpenetration of the crack faces. Some numerical method is proposed for solving the problem, based on domain decomposition and the Uzawa algorithm for solving variational inequalities.We give an example of numerical calculation by the finite element method.  相似文献   

5.
The representative volume element (RVE) method is applied to a fiber reinforced polymer material undergoing matrix damage and fiber fracture. Results of RVE computations are compared to uniaxial tensile tests performed with the composite material. It is shown that the macroscopic behavior of the composite material can accurately be predicted by RVE computations. (© 2011 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   

6.
The Saint–Venant torsion problem of a circular cylinder containing a radial crack with surface elasticity is studied. The surface elasticity is incorporated into the crack faces by using the continuum-based surface/interface model of Gurtin and Murdoch. Both an internal crack and an edge crack are considered. By using the Green’s function method, the boundary value problem is reduced to a Cauchy singular integro-differential equation of the first order, which can be numerically solved by using the Gauss–Chebyshev integration formula, the Chebyshev polynomials and the collocation method. Due to the incorporation of surface elasticity, the stresses exhibit the logarithmic singularity at the crack tips. The torsion problem of a circular cylinder containing two symmetric collinear radial cracks of equal length with surface elasticity is also solved by using a similar method. The strengths of the logarithmic singularity and the size-dependent torsional rigidity are calculated.  相似文献   

7.
This paper is concerned with the analysis of equilibrium problems for two‐dimensional elastic bodies with thin rigid inclusions and cracks. Inequality‐type boundary conditions are imposed at the crack faces providing a mutual non‐penetration between the crack faces. A rigid inclusion may have a delamination, thus forming a crack with non‐penetration between the opposite faces. We analyze variational and differential problem formulations. Different geometrical situations are considered, in particular, a crack may be parallel to the inclusion as well as the crack may cross the inclusion, and also a deviation of the crack from the rigid inclusion is considered. We obtain a formula for the derivative of the energy functional with respect to the crack length for considering this derivative as a cost functional. An optimal control problem is analyzed to control the crack growth. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   

8.
Sandra Ili&#x;  Klaus Hackl 《PAMM》2004,4(1):326-327
The transition between the chosen microstructure and microvariables and the material properties on the macrolevel is always a sensitive point in the theory of homogenisation. In this talk we will observe the transfer of data between the scales based on the multiscale finite element method where in each Gauss point of the macromesh a micromesh is attached. For a given deformation gradient provided from the macroscale one calculates microfluctuations satisfying periodic boundary conditions and from those the effective first Piola‐Kirchhoff stress tensor for each Gauss point. The latter provides a possibility to calculate the elasticity tensor on the macrolevel. We study a microstructure containing elliptical cracks of random aspect ratio and orientation. The results based on such procedure show the dependence of the macrovariables on the crack ellipticity. (© 2004 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   

9.
Fabric or continuous fiber reinforced rubber components (e.g. tires, air springs, industrial hoses, conveyor belts or membranes) are underlying high deformations in application and show a complex, nonlinear material behavior. A particular challenge depicts the simulation of these composites. In this contribution we show the identification of the stress and strain distributions by using an uncoupled multiscale modeling method, see [1]. Within this method, two representation levels are described: One, the meso level, where all constituents of the composite are shown in a discrete manner by a representative volume element (RVE) and secondly, the macro level, where the structural behavior of the component is defined by a smeared anisotropic hyperelastic constitutive law. Uncoupled means that the RVE does not drive the macroscopic material behavior directly as in a coupled approach, where a RVE boundary value problem has to be solved at every integration point of the macro level. Thus an uncoupled approach leads to a tremendous reduction in numerical effort because the boundary value problem of a RVE just has to be solved at a point of interest, see [1]. However, the uncoupled scale transition has to fulfill the HILL–MANDEL condition of energetic equivalence of both scales. We show the calibration of material parameters for a given constitutive model for fiber reinforced rubber by fitting experimental data on the macro level. Additionally, we demonstrate the determination of effective properties of the yarns. Finally, we compare the energies of both scales in terms of compliance with the HILL–MANDEL condition by using the example of a biaxial loaded sample and discuss the consequences for the mesoscopic level. (© 2014 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   

10.
An equilibrium problem for an elastic body is considered. It is assumed that the body has a thin elastic inclusion and a thin rigid inclusion. We analyze a junction problem assuming that the inclusions have a joint point. Different equivalent problem formulations are discussed, and existence of solutions is proved. A set of junction conditions is found. We investigate a convergence to infinity and to zero of a rigidity parameter of the elastic inclusion. A delamination of the elastic inclusion is also investigated. In this case, inequality‐type boundary conditions are imposed at the crack faces to prevent a mutual penetration between crack faces. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   

11.
The proper modeling of state-of-the-art engineering materials requires a profound understanding of the nonlinear macroscopic material behavior. Especially for heterogeneous materials the effective macroscopic response is amongst others driven by damage effects and the inelastic material behavior of the individual constituents [1]. Since the macroscopic length scale of such materials is significantly larger than the fine-scale structure, a direct modeling of the local structure in a component model is not convenient. Multiscale techniques can be used to predict the effective material behavior. To this end, the authors developed a modeling technique based on representative volume elements (RVE) to predict the effective material behavior on different length scales. The extended finite element method (XFEM) is used to model discontinuities within the material structure independent of the underlying FE mesh. A dual enrichment strategy allows for the combined modeling of kinks (material interfaces) and jumps (cracks) within the displacement field [2]. The gradual degradation of the interface is thereby controlled by a cohesive zone model. In addition to interface failure, a non-local strain driven continuum damage model has been formulated to efficiently detect localization zones within the material phases. An integral formulation introduces a characteristic length scale and assures the convergence of the approach upon mesh refinement [3]. The proposed method allows for an efficient modeling of substantial failure mechanisms within a heterogeneous structure without the need of remeshing or element substitution. Due to the generality of the approach it can be used on different length scales. (© 2014 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   

12.
《Comptes Rendus Mathematique》2014,352(7-8):609-613
In this paper we describe a new approach for the detection of fine structures in an image. This approach is based on the computation of the topological gradient associated with a cost function defined from a regularization of the data (possibly noisy). We get this approximation by solving a fourth-order PDE. The study of the topological sensitivity is made in the cases of both a circular inclusion and a crack. We illustrate our approach by giving two experimental results.  相似文献   

13.
The framework for shape and topology sensitivity analysis in geometrical domains with cracks is established for elastic bodies in two spatial dimensions. The equilibrium problem for the elastic body with cracks is considered. Inequality type boundary conditions are prescribed at the crack faces providing a non-penetration between the crack faces. Modelling of such problems in two spatial dimensions is presented with all necessary details for further applications in shape optimization in structural mechanics. In the paper, general results on the shape and topology sensitivity analysis of this problem are provided. The results are of interest of their own. In particular, the existence of the shape and topological derivatives of the energy functional is obtained. The results presented in the paper can be used for numerical solution of shape optimization and inverse problems in structural mechanics.  相似文献   

14.
Various phenomena occurring on the macrosscale result from physical and mechanical behaviour on the microscale [1]. For the mechanical modeling and simulation of the heterogeneous composition of fiber structured material, in addition to the material properties the contact between the fibers has to be taken into account. The material behaviour is strongly influenced by the material properties of the fiber, but also by the geometrical structure. Periodically arranged fibers like woven, knitted or plaited fabrics and randomly oriented ones like fleece can be distinguished in their arrangement. In consideration of different lengthscales the problem involves, it is necessary to introduce a multiscale approach based on the concept of a representative volume element (RVE). The macro-micro scale transition requires a method to impose the deformation gradient on the RVE by suited boundary conditions. The reversing scale transition, based on the HILL-MANDEL condition, requires the equality of the macroscopic average of the variation of work on the RVE and the local variation of the work on the macroscale [2]. For the micro-macro transition the averaged stresses have to be extracted by a homogenization scheme. From these results an effective material law can be derived. Beside the theoretical aspects, we present the stress-strain relation for RVE-models and different boundary conditions. (© 2011 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   

15.
As candidates for tissue‐independent phase properties of cortical and trabecular bone we consider (i) hydroxyapatite, (ii) collagen, (iii) ultrastructural water and non‐collagenous proteins, and (iv) marrow (water) filling the Haversian canals and the intertrabecular space. From experiments reported in the literature, we assign stiffness properties to these phases (experimental set I). On the basis of these phase definitions, we develop, within the framework of continuum micromechanics, a two step homogenization procedure: (i) At a length scale of 100 – 200 nm, hydroxyapatite (HA) crystals build up a crystal foam ('polycrystal'), and water and non‐collagenous organic matter fill the intercrystalline space (homogenization step I); (ii) At the ultrastructural scale of mineralized tissues, i.e. 5 to 10 microns, collagen assemblies composed of collagen molecules are embedded into the crystal foam, acting mechanically as cylindrical templates. At an enlarged material scale of 5 to 10 mm, the second homogenization step also accommodates the micropore space as cylindrical pore inclusions (Haversian and Volkmann canals, inter‐trabecular space), that are suitable for both trabecular and cortical bone. The input of this micromechanical model are tissue‐specific volume fractions of HA, collagen, and of the micropore space. The output are tissue‐specific ultrastructural and microstructural (=macroscopic=apparent) elasticity tensors. A second independent experimental set (composition data and experimental stiffness values) is employed to validate the proposed model. We report a a good agreement between model predictions and experimentally determined macroscopic stiffness values. The validation suggests that hydroxyapatite, collagen, and water are tissue‐independent phases, which define, through their mechanical interaction, the elasticity of all bones, whether cortical or trabecular.  相似文献   

16.
17.
Under study is the problem of bending an elastic plate with a thin rigid inclusion which may delaminate and form a crack. We find a system of boundary conditions valid on the faces of the crack and prove the existence of a solution. The problem of bending a plate with a volume rigid inclusion is also considered. We establish the convergence of solutions of this problem to a solution to the original problem as the size of the volume rigid inclusion tends to zero.  相似文献   

18.
Recently developed continuum phase field models for brittle fracture show excellent modeling capability in situations with complex crack topologies including branching in the small and large strain applications. This work presents a generalization towards fully coupled multi-physics problems at large strains. A modular concept is outlined for the linking of the diffusive crack modeling with complex multi field material response, where the focus is put on the model problem of finite thermo-elasticity. This concerns a generalization of crack driving forces from the energetic definitions towards stress-based criteria, the constitutive modeling of degradation of non-mechanical fluxes on generated crack faces. Particular assumptions are made on the generation of convective heat exchanges approximating surface load integrals of the sharp crack approach by distinct volume integrals. The coupling effect is also shown in generation of cracks due to thermally induced stress states. We finally demonstrate the performance of the phase field formulation of fracture at large strains by means of representative numerical examples. (© 2014 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   

19.
In this paper an application of the additive multilevel iteration method to parallel solving of large‐scale linear elasticity problems is considered. The results are derived in the framework of the hierarchical basis finite element discretization defined on a tensor product of one‐dimensional grid and a sequence of nested triangulations . The algorithm was tested on a number of model problems, arising from bridge foundation modeling. Parallel performance of the solver is reported for Cray T3E‐600 and Sun ES/4000 computer systems. Copyright © 1999 John Wiley & Sons, Ltd.  相似文献   

20.
The aim of this contribution is the numerical determination of macroscopic material properties based on constitutive relationships characterising the microscale. A macroscopic failure criterion is computed using a three dimensional finite element formulation. The proposed finite element model implements the Strong Discontinuity Approach (SDA) in order to include the localised, fully nonlinear kinematics associated with the failure on the microscale. This numerical application exploits further the Enhanced–Assumed–Strain (EAS) concept to decompose additively the deformation gradient into a conforming part corresponding to a smooth deformation mapping and an enhanced part reflecting the final failure kinematics of the microscale. This finite element formulation is then used for the modelling of the microscale and for the discretisation of a representative volume element (RVE). The macroscopic material behaviour results from numerical computations of the RVE. (© 2006 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号