首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
In any r‐uniform hypergraph for 2 ≤ tr we define an r‐uniform t‐tight Berge‐cycle of length ?, denoted by C?(r, t), as a sequence of distinct vertices v1, v2, … , v?, such that for each set (vi, vi + 1, … , vi + t ? 1) of t consecutive vertices on the cycle, there is an edge Ei of that contains these t vertices and the edges Ei are all distinct for i, 1 ≤ i ≤ ?, where ? + jj. For t = 2 we get the classical Berge‐cycle and for t = r we get the so‐called tight cycle. In this note we formulate the following conjecture. For any fixed 2 ≤ c, tr satisfying c + tr + 1 and sufficiently large n, if we color the edges of Kn(r), the complete r‐uniform hypergraph on n vertices, with c colors, then there is a monochromatic Hamiltonian t‐tight Berge‐cycle. We prove some partial results about this conjecture and we show that if true the conjecture is best possible. © 2008 Wiley Periodicals, Inc. J Graph Theory 59: 34–44, 2008  相似文献   

2.
《Journal of Graph Theory》2018,88(3):507-520
In 2015, Bryant, Horsley, Maenhaut, and Smith, generalizing a well‐known conjecture by Alspach, obtained the necessary and sufficient conditions for the decomposition of the complete multigraph into cycles of arbitrary lengths, where I is empty, when is even and I is a perfect matching, when is odd. Moreover, Bryant in 2010, verifying a conjecture by Tarsi, proved that the obvious necessary conditions for packing pairwise edge‐disjoint paths of arbitrary lengths in are also sufficient. In this article, first, we obtain the necessary and sufficient conditions for packing edge‐disjoint cycles of arbitrary lengths in . Then, applying this result, we investigate the analogous problem of the decomposition of the complete uniform multihypergraph into Berge cycles and paths of arbitrary given lengths. In particular, we show that for every integer , and , can be decomposed into Berge cycles and paths of arbitrary lengths, provided that the obvious necessary conditions hold, thereby generalizing a result by Kühn and Osthus on the decomposition of into Hamilton Berge cycles.  相似文献   

3.
We show that every 3‐uniform hypergraph H = (V,E) with |V(H)| = n and minimum pair degree at least (4/5 + o(1))n contains a squared Hamiltonian cycle. This may be regarded as a first step towards a hypergraph version of the Pósa‐Seymour conjecture.  相似文献   

4.
《Journal of Graph Theory》2018,88(2):284-293
For a hypergraph H, let denote the minimum vertex degree in H. Kühn, Osthus, and Treglown proved that, for any sufficiently large integer n with , if H is a 3‐uniform hypergraph with order n and then H has a perfect matching, and this bound on is best possible. In this article, we show that under the same conditions, H contains at least pairwise disjoint perfect matchings, and this bound is sharp.  相似文献   

5.
Bollobás, Reed, and Thomason proved every 3‐uniform hypergraph ? with m edges has a vertex‐partition V()=V1?V2?V3 such that each part meets at least edges, later improved to 0.6m by Halsegrave and improved asymptotically to 0.65m+o(m) by Ma and Yu. We improve this asymptotic bound to , which is best possible up to the error term, resolving a special case of a conjecture of Bollobás and Scott.  相似文献   

6.
Let H be a 3‐uniform hypergraph with n vertices. A tight Hamilton cycle C ? H is a collection of n edges for which there is an ordering of the vertices v1,…,vn such that every triple of consecutive vertices {vi,vi+1,vi+2} is an edge of C (indices are considered modulo n ). We develop new techniques which enable us to prove that under certain natural pseudo‐random conditions, almost all edges of H can be covered by edge‐disjoint tight Hamilton cycles, for n divisible by 4. Consequently, we derive the corollary that random 3‐uniform hypergraphs can be almost completely packed with tight Hamilton cycles whp, for n divisible by 4 and p not too small. Along the way, we develop a similar result for packing Hamilton cycles in pseudo‐random digraphs with even numbers of vertices. © 2011 Wiley Periodicals, Inc. Random Struct. Alg., 2011  相似文献   

7.
The well‐known Friendship Theorem states that if G is a graph in which every pair of vertices has exactly one common neighbor, then G has a single vertex joined to all others (a “universal friend”). V. Sós defined an analogous friendship property for 3‐uniform hypergraphs, and gave a construction satisfying the friendship property that has a universal friend. We present new 3‐uniform hypergraphs on 8, 16, and 32 vertices that satisfy the friendship property without containing a universal friend. We also prove that if n ≤ 10 and n ≠ 8, then there are no friendship hypergraphs on n vertices without a universal friend. These results were obtained by computer search using integer programming. © 2008 Wiley Periodicals, Inc. J Combin Designs 16: 253–261, 2008  相似文献   

8.
9.
In this article, we examine the possible orders of t‐subset‐regular self‐complementary k‐uniform hypergraphs, which form examples of large sets of two isomorphic t‐designs. We reformulate Khosrovshahi and Tayfeh–Rezaie's necessary conditions on the order of these structures in terms of the binary representation of the rank k, and these conditions simplify to a more transparent relation between the order n and rank k in the case where k is a sum of consecutive powers of 2. Moreover, we present new constructions for 1‐subset‐regular self‐complementary uniform hypergraphs, and prove that these necessary conditions are sufficient for all k, in the case where t = 1. © 2011 Wiley Periodicals, Inc. J Combin Designs 19: 439‐454, 2011  相似文献   

10.
《Journal of Graph Theory》2018,87(3):305-316
For a finite set V and a positive integer k with , letting be the set of all k‐subsets of V, the pair is called the complete k‐hypergraph on V, while each k‐subset of V is called an edge. A factorization of the complete k‐hypergraph of index , simply a ‐factorization of order n, is a partition of the edges into s disjoint subsets such that each k‐hypergraph , called a factor, is a spanning subhypergraph of . Such a factorization is homogeneous if there exist two transitive subgroups G and M of the symmetric group of degree n such that G induces a transitive action on the set and M lies in the kernel of this action. In this article, we give a classification of homogeneous factorizations of that admit a group acting transitively on the edges of . It is shown that, for and , there exists an edge‐transitive homogeneous ‐factorization of order n if and only if is one of (32, 3, 5), (32, 3, 31), (33, 4, 5), , and , where and q is a prime power with .  相似文献   

11.
A cyclic ordering of the vertices of a k‐uniform hypergraph is called a hamiltonian chain if any k consecutive vertices in the ordering form an edge. For k = 2 this is the same as a hamiltonian cycle. We consider several natural questions about the new notion. The main result is a Dirac‐type theorem that provides a sufficient condition for finding hamiltonian chains in k‐uniform hypergraphs with large (k − 1)‐minimal degree. If it is more than than the hypergraph contains a hamiltonian chain. © 1999 Wiley & Sons, Inc. J Graph Theory 30: 205–212, 1999  相似文献   

12.
We examine the correspondence between the various notions of quasirandomness for k‐uniform hypergraphs and σ‐algebras related to measurable hypergraphs. This gives a uniform formulation of most of the notions of quasirandomness for dense hypergraphs which have been studied, with each notion of quasirandomness corresponding to a σ‐algebra defined by a collection of subsets of . We associate each notion of quasirandomness with a collection of hypergraphs, the ‐adapted hypergraphs, so that G is quasirandom exactly when it contains roughly the correct number of copies of each ‐adapted hypergraph. We then identify, for each , a particular ‐adapted hypergraph with the property that if G contains roughly the correct number of copies of then G is quasirandom in the sense of . This generalizes recent results of Kohayakawa, Nagle, Rödl, and Schacht; Conlon, Hàn, Person, and Schacht; and Lenz and Mubayi giving this result for some particular notions of quasirandomness. © 2016 Wiley Periodicals, Inc. Random Struct. Alg., 50, 114–139, 2017  相似文献   

13.
14.
Let G = (V, E) be a connected graph. For a vertex subset , G[S] is the subgraph of G induced by S. A cycle C (a path, respectively) is said to be an induced cycle (path, respectively) if G[V(C)] = C (G[V(P)] = P, respectively). The distance between a vertex x and a subgraph H of G is denoted by , where d(x, y) is the distance between x and y. A subgraph H of G is called 2-dominating if d(x, H) ≤ 2 for all . An induced path P of G is said to be maximal if there is no induced path P′ satisfying and . In this paper, we assume that G is a connected claw-free graph satisfying the following condition: for every maximal induced path P of length p ≥ 2 with end vertices u, v it holds:
Under this assumption, we prove that G has a 2-dominating induced cycle and G is Hamiltonian. J. Feng is an associate member of “Graduiertenkolleg: Hierarchie und Symmetrie in mathematischen Modellen (DFG)” at RWTH Aachen, Germany.  相似文献   

15.
Let denote the complete k‐uniform k‐partite hypergraph with classes of size t and the complete k‐uniform hypergraph of order s. One can show that the Ramsey number for and satisfies when t = so(1) as s. The main part of this paper gives an analogous result for induced Ramsey numbers: Let be an arbitrary k‐partite k‐uniform hypergraph with classes of size t and an arbitrary k‐graph of order s. We use the probabilistic method to show that the induced Ramsey number (i.e. the smallest n for which there exists a hypergraph such that any red/blue coloring of yields either an induced red copy of or an induced blue copy of ) satisfies . © 2015 Wiley Periodicals, Inc. Random Struct. Alg., 48, 5–20, 2016  相似文献   

16.
Let C 4 be a cycle of order 4. Write e x ( n , n , n , C 4 ) for the maximum number of edges in a balanced 3‐partite graph whose vertex set consists of three parts, each has n vertices that have no subgraph isomorphic to C 4 . In this paper, we show that e x ( n , n , n , C 4 ) 3 2 n ( p + 1 ) , where n = p ( p ? 1 ) 2 and p is a prime number. Note that e x ( n , n , n , C 4 ) ( 3 2 2 + o ( 1 ) ) n 3 2 from Tait and Timmons's works. Since for every integer m , one can find a prime p such that m p ( 1 + o ( 1 ) ) m , we obtain that lim n e x ( n , n , n , C 4 ) 3 2 2 n 3 2 = 1 .  相似文献   

17.
Let ${\mathcal{H}}=({{X}},{\mathcal{E}})Let ${\mathcal{H}}=({{X}},{\mathcal{E}})$ be a hypergraph with vertex set X and edge set ${\mathcal{E}}$. A C‐coloring of ${\mathcal{H}}$ is a mapping ?:X→? such that |?(E)|<|E| holds for all edges ${{E}}\in{\mathcal{E}}$ (i.e. no edge is multicolored). We denote by $\bar{\chi}({\mathcal{H}})$ the maximum number |?(X)| of colors in a C‐coloring. Let further $\alpha({\mathcal{H}})$ denote the largest cardinality of a vertex set S?X that contains no ${{E}}\in{\mathcal{E}}$, and $\tau({\mathcal{H}})=|{{X}}|-\alpha({\mathcal{H}})$ the minimum cardinality of a vertex set meeting all $E \in {\mathcal{E}}$. The hypergraph ${\mathcal{H}}$ is called C‐perfect if $\bar{\chi}({\mathcal{H}}\prime)=\alpha({\mathcal{H}}\prime)$ holds for every induced subhypergraph ${\mathcal{H}}\prime\subseteq{\mathcal{H}}$. If ${\mathcal{H}}$ is not C‐perfect but all of its proper induced subhypergraphs are, then we say that it is minimally C‐imperfect. We prove that for all r, k∈? there exists a finite upper bound h(r, k) on the number of minimally C‐imperfect hypergraphs ${\mathcal{H}}$ with $\tau({\mathcal{H}})\le {{k}}$ and without edges of more than r vertices. We give a characterization of minimally C‐imperfect hypergraphs that have τ=2, which also characterizes implicitly the C‐perfect ones with τ=2. From this result we derive an infinite family of new constructions that are minimally C‐imperfect. A characterization of minimally C‐imperfect circular hypergraphs is presented, too. © 2009 Wiley Periodicals, Inc. J Graph Theory 64: 132–149, 2010  相似文献   

18.
19.
《Discrete Mathematics》2022,345(12):113069
The toughness of a noncomplete graph G is the maximum real number t such that the ratio of |S| to the number of components of G?S is at least t for every cutset S of G. Determining the toughness for a given graph is NP-hard. Chvátal's toughness conjecture, stating that there exists a constant t0 such that every graph with toughness at least t0 is hamiltonian, is still open for general graphs. A graph is called (P32P1)-free if it does not contain any induced subgraph isomorphic to P32P1, the disjoint union of P3 and two isolated vertices. In this paper, we confirm Chvátal's toughness conjecture for (P32P1)-free graphs by showing that every 7-tough (P32P1)-free graph on at least three vertices is hamiltonian.  相似文献   

20.
We introduce a method for reducing k‐tournament problems, for k ≥ 3, to ordinary tournaments, that is, 2‐tournaments. It is applied to show that a k‐tournament on n ≥ k + 1 + 24d vertices (when k ≥ 4) or on n ≥ 30d + 2 vertices (when k = 3) has d edge‐disjoint Hamiltonian cycles if and only if it is d‐edge‐connected. Ironically, this is proved by ordinary tournament arguments although it only holds for k ≥ 3. We also characterizatize the pancyclic k‐tournaments, a problem posed by Gutin and Yeo.(Our characterization is slightly incomplete in that we prove it only for n large compared to k.). © 2005 Wiley Periodicals, Inc. J Graph Theory  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号