共查询到20条相似文献,搜索用时 0 毫秒
1.
Aydar Rakhmatullin Vasiliy V. Brusko Elmira R. Shcherbitskaya Ilya B. Polovov Rinat Bakirov Catherine Bessada 《Magnetic resonance in chemistry : MRC》2022,60(9):893-900
A family of three- and four-coordinated silver(I) complexes of formulas [Ag(PPh3)2L], [Ag(PPh3)L], and [AgL]n with N-thiophosphorylated thiourea and thioamide ligands of general formula RC(S)NHP(S)(OPri)2 [R = Ph, PhNH, iPrNH, tBuNH, NH2] have been studied by solid-state 109Ag and 31P CPMAS NMR spectroscopy. 109Ag NMR spectra have provided valuable structural information about Ag coordination, which is in good accordance with the available crystal structure data. The data presented in this work represent a significant addition to the available 109Ag chemical shifts and chemical shifts anisotropies. The silver chemical shift ranges for different P,S-environments and coordination state were discussed in detail. The 1J(31P–107/109Ag) and 2J(31P–31P) values were determined and analyzed. 相似文献
2.
Irina L. Rusakova Yury Yu. Rusakov Leonid B. Krivdin 《Magnetic resonance in chemistry : MRC》2016,54(1):39-45
Indirect relativistic bridge effect (IRBE) and indirect relativistic substituent effect (IRSE) induced by the ‘heavy’ environment of the IV‐th, V‐th and VI‐th main group elements on the one‐bond and geminal 13C? 1H spin–spin coupling constants are observed, and spin‐orbit parts of these two effects were interpreted in terms of the third‐order Rayleigh–Schrödinger perturbation theory. Both effects, IRBE and IRSE, rapidly increase with the total atomic charge of the substituents at the coupled carbon. The accumulation of IRSE for geminal coupling constants is not linear with respect to the number of substituents in contrast to the one‐bond couplings where IRSE is an essentially additive quantity. Copyright © 2015 John Wiley & Sons, Ltd. 相似文献
3.
Non‐empirical calculations of NMR indirect carbon–carbon coupling constants: 1. Three‐membered rings
《Magnetic resonance in chemistry : MRC》2002,40(3):187-194
The carbon–carbon indirect nuclear spin–spin coupling constants in cyclopropane, aziridine and oxirane were investigated by means of ab initio calculations at the RPA, SOPPA and DFT/B3LYP levels. We found that the carbon–carbon couplings are by far dominated by the Fermi contact term. Our best SOPPA and DFT results are in a very good agreement with each other and with the experimental values, whereas calculations at the RPA level of theory strongly overestimate the carbon–carbon couplings. Significant differences in the basis set dependence of the calculated carbon–carbon coupling constants obtained with either wavefunction method, RPA or SOPPA, or the density functional method, DFT/B3LYP, are observed. The SOPPA results depend much more strongly on the quality of the basis set than the results of DFT/B3LYP calculations. The medium‐sized core‐valence basis sets cc‐pCVTZ and even cc‐pCVDZ were found to perform fairly well at the SOPPA level for the one‐bond carbon–carbon couplings investigated here. Copyright © 2002 John Wiley & Sons, Ltd. 相似文献
4.
《Magnetic resonance in chemistry : MRC》2003,41(6):417-430
A systematic study of the one‐bond and long‐range J(C,C), J(C,H) and J(H,H) in the series of nine bicycloalkanes was performed at the SOPPA level with special emphasis on the coupling transmission mechanisms at bridgeheads. Many unknown couplings were predicted with high reliability. Further refinement of SOPPA computational scheme adjusted for better performance was carried out using bicyclo[1.1.1]pentane as a benchmark to investigate the influence of geometry, basis set and electronic correlation. The calculations performed demonstrated that classical ab initio SOPPA applied with the locally dense Dunning's sets augmented with inner core s‐functions used for coupled carbons and Sauer's sets augmented with tight s‐functions used for coupled hydrogens performs perfectly well in reproducing experimental values of different types of coupling constants (the estimated reliability is ca 1–2 Hz) in relatively large organic molecules of up to 11 carbon atoms. Additive coupling increments were derived for J(C,C), J(C,H) and J(H,H) based on the calculated values of coupling constants within SOPPA in the model bicycloalkanes, in reasonably good agreement with the known values obtained earlier on pure empirical grounds. Most of the bridgehead couplings in all but one bicycloalkane appeared to be essentially additive within ca 2–3 Hz while bicyclo[1.1.1]pentane demonstrated dramatic non‐additivity of ?14.5 Hz for J(C,C), +16.6 Hz for J(H,H) and ?5.5 Hz for J(C,H), in line with previous findings. Non‐additivity effects in the latter compound established at the SOPPA level should be attributed to the through‐space non‐bonded interactions at bridgeheads due to the essential overlapping of the bridgehead rear lobes which provides an additional and effective non‐bonding coupling path for the bridgehead carbons and their protons in the bicyclopentane framework. Copyright © 2003 John Wiley & Sons, Ltd. 相似文献
5.
《Magnetic resonance in chemistry : MRC》2002,40(3):219-224
An extensive study of both liquid‐ and solid‐state NMR spectroscopy was undertaken in order to elucidate the structural features of a phenyleneterephthalamide oligomer (OPTA) and of some related diarylamides. 1D‐ and 2D‐COSY measurements allowed us to assign completely the proton signals of the title compounds in solution, while 1D‐, 2D‐HETCOR and 2D‐COLOC measurements were used to assign 13C resonances. Solid‐state 13C NMR experiments, by conventional cross‐polarization (CP) at different contact times and with the dipolar dephased CP technique, were used to characterize these molecules in the solid state. Such techniques allowed us to differentiate among different carbon atoms; in the resulting spectra it was then possible to observe the selective appearance of signals from protonated and quaternary carbon atoms. It was also ascertained that the limited structural mobility of the insoluble OPTA, existing as a single monophasic species, can be explained in terms of hydrogen‐type bonds present in the solid state. Copyright © 2002 John Wiley & Sons, Ltd. 相似文献
6.
《Magnetic resonance in chemistry : MRC》2003,41(2):91-101
High‐level non‐empirical calculations of carbon–carbon spin–spin coupling constants in a series of strained polycarbocycles have been carried out, in excellent agreement with available experimental data. The utmost importance of electronic correlation effects in this case has been demonstrated and it has been shown that the Second‐Order Polarization Propagator Approach (SOPPA) is an adequate method to account for those effects. It has been demonstrated that the most reliable basis sets to calculate J(C,C) at the SOPPA level are the correlation‐consistent basis sets of Dunning and co‐workers augmented with inner core s‐functions or decontracted in their s‐parts. The nature of the unusual bridgehead–bridgehead bonds in bicyclobutane and propellane in terms of s‐characters of bonding hybrids and also the hybridization effects in spiropentane are discussed based on the arguments derived from the current calculations of J(C,C) in the title compounds. The values of the unknown J(C,C) in propellane and spiropentane are predicted with high reliability. Copyright © 2003 John Wiley & Sons, Ltd. 相似文献
7.
《Magnetic resonance in chemistry : MRC》2003,41(3):183-192
1H and 13C NMR spectra of symmetrically substituted cyclotriphosphazenes exhibit second‐order effects. The influence of the 31P,31P coupling constants between ring phosphorus atoms on these effects was studied. Some values of this coupling constant between phosphorus bearing identical substituents were measured using 13C satellites of the 31P signals or by introduction of a chiral substituent on the third phosphorus atom. Copyright © 2003 John Wiley & Sons, Ltd. 相似文献
8.
《Magnetic resonance in chemistry : MRC》2003,41(11):885-901
All possible J(C,C) of the bicarbocyclic frameworks together with J(C,H) and J(H,H) at bridgeheads in the series of six bridged bicycloalkanes, bicyclo[1.1.0]butane, bicyclo[2.1.0]pentane, bicyclo[3.1.0]hexane, bicyclo[2.2.0]hexane, bicyclo[3.2.0]heptane and bicyclo[3.3.0]octane, were calculated at the SOPPA level with correlation consistent Dunning sets cc‐pVTZ‐Cs augmented with inner core s‐functions and locally dense Sauer sets aug‐cc‐pVTZ‐J augmented with tight s‐functions and rationalized in terms of the multipath coupling mechanism and hybridization effects explaining many interesting structural trends. Copyright © 2003 John Wiley & Sons, Ltd. 相似文献
9.
《Magnetic resonance in chemistry : MRC》2003,41(3):157-168
High‐level ab initio calculations of carbon–carbon coupling constants were carried out in tetrahedrane, prismane and cubane using the SOPPA (Second‐Order Polarization Propagator Approach) computational scheme, in good agreement with available experimental data. It was found that SOPPA performs perfectly well in combination with Dunning's correlation‐consistent basis sets augmented with inner core functions; however, no improvement was observed on adding tight s‐functions. The utmost importance of electronic correlation effects decreasing the total values of computed J(C,C) in the title compounds by a factor of ~2.0–2.5 was found. Unknown values of J(C,C) in the title polyhedranes were predicted with high reliability and the latter were treated in terms of s‐characters of carbon–carbon bonds based on the additive scheme of coupling pathways. All three compounds under study showed decreased s‐characters of their carbon–carbon bonds, which is the result of their remarkable steric strain. Copyright © 2003 John Wiley & Sons, Ltd. 相似文献
10.
Quantitative Structural Constraints for Organic Powders at Natural Isotopic Abundance Using Dynamic Nuclear Polarization Solid‐State NMR Spectroscopy 下载免费PDF全文
Dr. Giulia Mollica Myriam Dekhil Dr. Fabio Ziarelli Dr. Pierre Thureau Prof. Stéphane Viel 《Angewandte Chemie (International ed. in English)》2015,54(20):6028-6031
A straightforward method is reported to quantitatively relate structural constraints based on 13C–13C double‐quantum build‐up curves obtained by dynamic nuclear polarization (DNP) solid‐state NMR to the crystal structure of organic powders at natural isotopic abundance. This method relies on the significant gain in NMR sensitivity provided by DNP (approximately 50‐fold, lowering the experimental time from a few years to a few days), and is sensitive to the molecular conformation and crystal packing of the studied powder sample (in this case theophylline). This method allows trial crystal structures to be rapidly and effectively discriminated, and paves the way to three‐dimensional structure elucidation of powders through combination with powder X‐ray diffraction, crystal‐structure prediction, and density functional theory computation of NMR chemical shifts. 相似文献
11.
Mallory Gobet Corinne Rondeau‐Mouro Solange Buchin Jean‐Luc Le Quéré Elisabeth Guichard Loïc Foucat Céline Moreau 《Magnetic resonance in chemistry : MRC》2010,48(4):297-303
The feasibility of solid‐state magic angle spinning (MAS) 31P nuclear magnetic resonance (NMR) spectroscopy and 23Na NMR spectroscopy to investigate both phosphates and Na+ ions distribution in semi‐hard cheeses in a non‐destructive way was studied. Two semi‐hard cheeses of known composition were made with two different salt contents. 31P Single‐pulse excitation and cross‐polarization MAS experiments allowed, for the first time, the identification and quantification of soluble and insoluble phosphates in the cheeses. The presence of a relatively ‘mobile’ fraction of colloidal phosphates was evidenced. The detection by 23Na single‐quantum NMR experiments of all the sodium ions in the cheeses was validated. The presence of a fraction of ‘bound’ sodium ions was evidenced by 23Na double‐quantum filtered NMR experiments. We demonstrated that NMR is a suitable tool to investigate both phosphates and Na+ ions distributions in cheeses. The impact of the sodium content on the various phosphorus forms distribution was discussed and results demonstrated that NMR would be an important tool for the cheese industry for the processes controls. Copyright © 2010 John Wiley & Sons, Ltd. 相似文献
12.
R. Takeda S. Yamanaka M. Shoji K. Yamaguchi 《International journal of quantum chemistry》2007,107(6):1328-1334
We present ab initio methods to determine the Dzyaloshinskii–Moriya (DM) parameter, which provides the anisotropic effects of noncollinear spin systems. For this purpose, we explore various general spin orbital (GSO) approaches, such as Hartree–Fock (HF), density functional theory (DFT), and configuration interaction (CI), with one‐electron spin–orbit coupling (SOC1). As examples, two simple D3h‐symmetric models, H3 and B(CH2)3, are examined. Implications of the computational results are discussed in relation to as isotropic and anisotropic interactions of molecular‐based magnets. © 2006 Wiley Periodicals, Inc. Int J Quantum Chem, 2007 相似文献
13.
Marta Bugaj Piotr A. Baran Krystyna Kamieńska‐Trela Adam Krówczyński 《Magnetic resonance in chemistry : MRC》2009,47(10):843-856
Spin–spin carbon–carbon coupling constants across one, two and three bonds, J(CC), have been measured for a series of aryl‐substituted Z‐s‐Z‐s‐E enaminoketones and their thio analogues. As a result, a large set, altogether 178, of J(CC)s has been obtained. It consists of 82 couplings across one bond, 31 couplings across two bonds and 65 couplings across three bonds. Independently, the DFT calculations at the B3PW91/6‐311++G(d,p)//B3PW91/6‐311++G(d,p) level yielded a set of theoretical J(CC) values. A comparison of these two sets of data gave an excellent linear correlation with parameters a and b close to ideal; a = 0.9978 which is not far from unity and b = 0.22 Hz which is close to zero. The 1J(CC) couplings determined for the crucial fragment of the molecules, i.e. ? C?C? C?O (or ? C?C? C?S), are: 1J(C?C) ≈ 68 Hz (67 Hz) and 1J(C? C) = 60.5 Hz (60.0 Hz). The corresponding couplings found for the Z‐s‐Z‐s‐E isomer of the parent enaminoketone, 4‐methylamino‐but‐3‐en‐2‐one are 64.1 and 59.3 Hz, respectively. The most sensitive towards substitution of the oxygen atom by sulfur are two‐bond couplings between the α‐vinylic and aromatic Cipso carbon atoms, which attain 12 Hz in the enaminoketone derivatives and decrease to 5 Hz in their thio analogues. Copyright © 2009 John Wiley & Sons, Ltd. 相似文献
14.
15.
《Magnetic resonance in chemistry : MRC》2003,41(4):253-259
Experiments for 1H‐detected heteronuclear 1H,X correlation spectroscopy with 31P‐relayed coherence transfer are described which allow the indirect detection of δX and nJ(X,P) even in the absence of a direct J(X,H) coupling. The use of these techniques for the assignments of 13C, 15N, and 183W NMR data of organophosphorus compounds is demonstrated. Copyright © 2003 John Wiley & Sons, Ltd. 相似文献
16.
《Magnetic resonance in chemistry : MRC》2018,56(4):276-284
Multinuclear solid‐state NMR and powder X‐ray diffraction data collected for phosphonate materials Zr(O3PC6H4PO3) · 3.6H2O and Sn(O3PC6H4PO3)0.85(O3POH)0.30 · 3.09H2O have resulted in the layered structure, where the phosphonic acids cross‐link the layers. The main structural motif (the 111 connectivity in the PO3 group) has been established by determination of chemical shift anisotropy parameters for phosphorus nuclei in the phosphonate groups. An analysis of the variable‐temperature 31P T1 measurements and the shapes of the phosphorus resonances in the 31P static NMR spectra have resulted in the dipolar mechanism of the phosphorus spin‐lattice relaxation, where the rotating phenylene rings reorient dipolar vectors P…H as a driving force of the relaxation process. It has been found that water protons do not affect the 31P T1 times. The activation energy of the phenylene rotation in both compounds has been determined as low as 12.5 kJ/mol. The interpretation of the phosphorus relaxation data has been independently confirmed by the measurements of 1H T1 times for protons of the phenylene rings. 相似文献
17.
Mamta Sharma D. Raghavender Goud A. K. Gupta M. V. S. Suryanarayana 《Magnetic resonance in chemistry : MRC》2010,48(5):403-408
The complete multinuclear 1H, 13C, 31P and 19F NMR data of symmetrically substituted amines containing N,N‐dialkyl‐P‐alkyl phosphonamidic fluorides are presented. Assignment was achieved, using various one‐and two‐dimensional NMR experiments. Copyright © 2010 John Wiley & Sons, Ltd. 相似文献
18.
《Magnetic resonance in chemistry : MRC》2003,41(12):1021-1025
The conformational state of the [3.3.3]propellane framework for 14‐hydroxymodhephene was determined by extensive application of one‐ and two‐dimensional 1H and 13C NMR spectroscopy combined with x‐ray diffraction studies of a synthesized derivative, spectral simulation and molecular modeling. The conformational rigidity of the molecule in solution, established at room temperature, revealed the existence of envelope conformers for both cyclopentane fragments, with C‐7 puckered endo and C‐10 exo with respect to the mean plane containing the B and C rings. Copyright © 2003 John Wiley & Sons, Ltd. 相似文献
19.
《Magnetic resonance in chemistry : MRC》2002,40(9):566-572
Based on 1H NMR spectral analysis combined with molecular simulation, conformational states of the cyclohexanone ring were studied for some 1R,4S‐2‐(4‐X‐benzylidene)‐p‐menthan‐3‐ones (X = COOCH3 or C6H5) in CDCl3 and C6D6. The co‐existence of chair conformers with an axial orientation of both alkyl substituents and twist‐boat forms was established for the compounds studied at room temperature (22–23° C). The substituent X does not influence appreciably the ratio of these conformers, but the fraction of twist‐boat forms increases noticeably in benzene solutions as compared with CDCl3 solutions. Rotameric states of the isopropyl fragment were also characterised for the compounds studied. Distinctions in conformational states for the 1R,4S‐2‐arylidene‐p‐menthan‐3‐ones and (?)‐menthone were revealed and are discussed. Copyright © 2002 John Wiley & Sons, Ltd. 相似文献
20.
Sergey V. Fedorov Leonid B. Krivdin Yury Yu. Rusakov Igor A. Ushakov Natalia V. Istomina Natalia A. Belogorlova Svetlana F. Malysheva Nina K. Gusarova Boris A. Trofimov 《Magnetic resonance in chemistry : MRC》2009,47(4):288-299
Theoretical energy‐based conformational analysis of bis(2‐phenethyl)vinylphosphine and related phosphine oxide, sulfide and selenide synthesized from available secondary phosphine chalcogenides and vinyl sulfoxides is performed at the MP2/6‐311G** level to study stereochemical behavior of their 31P–1H spin–spin coupling constants measured experimentally and calculated at different levels of theory. All four title compounds are shown to exist in the equilibrium mixture of two conformers: major planar s‐cis and minor orthogonal ones, while 31P–1 H spin–spin coupling constants under study are found to demonstrate marked stereochemical dependences with respect to the geometry of the coupling pathways, and to the internal rotation of the vinyl group around the P(X)‐C bonds (X = LP, O, S and Se), opening a new guide in the conformational studies of unsaturated phosphines and phosphine chalcogenides. Copyright © 2009 John Wiley & Sons, Ltd. 相似文献