首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Novel conjugated polyfluorene copolymers, poly[9,9‐dihexylfluorene‐2,7‐diyl‐co‐(2,5‐bis(4′‐diphenylaminostyryl)‐phenylene‐1,4‐diyl)]s (PGs), have been synthesized by nickel(0)‐mediated polymerization from 2,7‐dibromo‐9,9‐dihexylfluorene and 1,4′‐dibromo‐2,5‐bis(4‐diphenylaminostyryl)benzene with various molar ratios of the monomers. Because of the incorporation of triphenylamine (TPA) moieties, PGs exhibit much higher HOMO levels than the corresponding polyfluorene homopolymers and are able to facilitate hole injection into the polymer layer from the anode electrode in light‐emitting diodes. Conventional polymeric light‐emitting devices with the configuration ITO/PEDOT:PSS/polymer/Ca/Al have been fabricated. A light‐emitting device produced with one of the PG copolymers (PG10) as the emitting layer exhibited a voltage‐independent and stable bluish‐green emission with color coordinates of (0.22, 0.42) at 5 V. The maximum brightness and current efficiency of the PG10 device were 3370 cd/m2 (at 9.6 V) and 0.6 cd/A, respectively. To realize a white polymeric light‐emitting diode, PG10 as the host material was blended with 1.0 wt % of a red‐light‐emitting polymer, poly[9,9‐dioctylfluorene‐2,7‐diyl‐alt‐2,5‐bis(2‐thienyl‐2‐cyanovinyl)‐1‐(2′‐ethylhexyloxy)‐4‐methoxybenzene‐5′,5′‐diyl] (PFR4‐S), and poly[2‐methoxy‐5‐(2′‐ethylhexyloxy)‐1,4‐phenylenevinylene] (MEH‐PPV). The device based on PG10:PFR4‐S showed an almost perfect pure white electroluminescence emission, with Commission Internationale de l'Eclairage (CIE) coordinates of (0.33, 0.36) at 8 V; for the PG10:MEH‐PPV device, the CIE coordinates at this voltage were (0.30, 0.40) with a maximum brightness of 1930 cd/m2. Moreover, the white‐light emission from the PG10:PFR4‐S device was stable even at different driving voltages and had CIE coordinates of (0.34, 0.36) at 6 V and (0.31, 0.35) at 10 V. © 2007 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 45: 1199–1209, 2007  相似文献   

2.
We report a comparative study of two organic soluble, vinylene‐based, alternating donor–acceptor copolymers with 1,4‐(2,5‐dihexadecyloxyphenylene) as the donor; the acceptor is either a 2,5‐linked pyridine or a 5,8‐linked 2,3‐diphenylpyrido[3,4‐b]pyrazine. The polymers are synthesized via a Heck coupling methodology from a dihalo monomer and a divinyl monomer to yield number‐average molecular weights of 16,000 g/mol for the pyridine polymer (PPyrPV) and 6500 g/mol for the pyridopyrazine polymer (PPyrPyrPV), with high solubility in common chlorinated solvents and lower solubility in less polar solvents (e.g., tetrahydrofuran). Thin‐film measurements show band gaps of 2.2 and 1.8 eV for PPyrPV and PPyrPyrPV, respectively. Both polymers exhibit photoluminescence in solution and in the solid state and exhibit electroluminescence when incorporated into light‐emitting diodes. In this case, a broad red emission centered at 690 nm for PPyrPV and a near‐infrared emission centered at 800 nm for PPyrPyrPV have been observed. © 2005 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 43: 1417–1431, 2005  相似文献   

3.
Polyfluorene homopolymer ( P1 ) and its carbazole derivatives ( P2 – P4 ) have been prepared with good yield by Suzuki coupling polymerization. P2 is an alternating copolymer based on fluorene and carbazole; P3 is a hyperbranched polymer with carbazole derivative as the core and polyfluorene as the long arms; P4 is a hyperbranched polymer with carbazole derivative as the core and the alternating fluorene and carbazole as the long arms. These polymers show highly thermal stability, and their structures and physical properties are studied using gel permeation chromatography, 1H NMR, 13C NMR, elemental analysis, Fourier transform infrared spectroscopy, thermogravimetry, UV–vis absorption, photoluminescence, and cyclic voltammetry (CV). The influence of the incorporation of carbazole and the hyperbranched structures on the thermal, electrochemical, and electroluminescent properties has been investigated. Both carbazole addition and the hyperbranched structure increase the thermal and photoluminescent stability. The CV shows an increase of the HOMO energy levels for the derivatives, compared with polyfluorene homopolymer ( P1 ). The EL devices fabricated by these polymers exhibit pure blue‐light‐emitting with negligible low‐energy emission bands, indicating that the hyperbranched structure has a strong effect on the PLED characteristics. The results imply that incorporating carbazole into polyfluorene to form a hyperbranched structure is an efficient way to obtain highly stable blue‐light‐emitting conjugated polymers, and it is possible to adjust the property of light‐emitting polymers by the amount of carbazole derivative incorporated into the polymers. © 2007 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 46: 790–802, 2008  相似文献   

4.
To study the effect of nonconjugation on polymeric and photophysical properties of thiophene‐containing polymers, new light‐emitting copolymers comprising either alternate 2,5‐diphenylthiophene and vinylene or alternate 2,5‐diphenylthiophene and aliphatic ether segments were synthesized. Both copolymers contained 2,5‐diphenylthiophene as the major chromophore and emitted a sky bluish fluorescence in dilute solution (10?2 mg/mL). With a rigid and planarity structure and the concomitant crystallinity, the former copolymer (fully conjugated) possessed a higher quantum efficiency, a higher glass‐transition temperature, and a better thermal stability. In contrast, the latter copolymer (conjugated–nonconjugated) had better solubility and provided enhanced photophysical properties for the fabricated polymeric light‐emitting diode (PLED) device: at 15 V, the maximum current and brightness were 110 mA/cm2 and 4289 cd/m2, respectively, and the electroluminescence efficiency remained constant at approximately 4.9 cd/A in a voltage range of 8 to 14 V. The existence of intramolecular/intermolecular aggregates in the latter copolymer was corroborated from the the UV–vis and photoluminescence spectra of its solutions. With an increase in solution concentration, the shape and λmax of the photoluminescence spectrum were redshifted. In a solution with a concentration as high as 10 mg/mL, the redshift was so drastic that the photoluminescence spectrum was nearly identical to that of a solid‐film. © 2004 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 42: 6061–6070, 2004  相似文献   

5.
Five new thermally robust electroluminescent fluorene‐based conjugated copolymers, including poly[2,7‐(9,9‐dioctylfluorene)‐co‐4,7‐{5,6‐bis(3,7‐dimethyloctyloxymethyl)‐2,1,3‐(benzothiadiazole)}] ( PFO‐P2C10BT ) were synthesized and used to fabricate the efficient polymer light‐emitting diodes (PLEDs). The glass transition temperatures of the polymers were found to be higher than that of poly(9,9‐dialkylfluorenes) and are in the range 113–165 °C. We fabricated PLEDs in indium‐tin oxide/PEDOT/light‐emitting polymer/cathode configurations using either double‐layer LiF/Al or triple‐layer Alq3/LiF/Al cathode structures. The new copolymers were found to have emission colors that vary from greenish blue (491 nm) to green (543 nm) depending on the copolymer composition. The maximum brightness and luminance efficiency of these PLEDs were found to be up to 5347 cd/m2 and 1.51 cd/A at 10 V, respectively. © 2008 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 46: 6762–6769, 2008  相似文献   

6.
Conjugated polymers containing electron‐transporting, hole‐transporting, and blue light‐emitting units were synthesized by Suzuki polycondensation. These copolymers exhibited excellent thermal and optical stability. Optical investigation indicated that the incorporation of the spirobifluorene units in the polymer main chain could markedly increase the effective conjugation length of polymers. Electrochemical studies showed that the incorporation of spirobifluorene unit could raise the electrochemical stability and improve the electron‐ and hole‐injecting abilities. The electroluminescent results also showed that the introducing of spirobifluorene units could significantly improve the device performance. © 2008 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 46: 1349–1356, 2008  相似文献   

7.
Fabrication of polymer light‐emitting diodes based on emission from the phosphorescent molecule fac‐tris(2‐phenylpyridine) iridium doped into a poly(N‐vinyl carbazole) host are reported. For single‐layered devices with magnesium‐silver cathodes, the luminance efficiency at 20 mA/cm2 was measured as 8.7 cd/A. This efficiency could be increased by over a factor of two by incorporation of evaporated small‐molecule layers into the device structure. Significant increases in device efficiency were also obtained without these evaporated layers by modification of the electrodes. Incorporation of 3,4‐poly(ethylene dioxythiophene):poly(styrene sulfonate) at the anode improved the device efficiency but had little impact on drive voltage. Insertion of lithium fluoride at the cathode resulted in no improvement in performance for magnesium‐silver and aluminum cathodes, but a significant improvement was realized in efficiency and drive voltage for calcium‐aluminum cathodes. Excellent device performance was observed for all three cathode metals used in conjunction with cesium fluoride. Through optimization of the electrodes and emitter‐layer thickness, devices exhibiting efficiencies as high as 37.3 cd/A are realized. © 2003 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 41: 2715–2725, 2003  相似文献   

8.
A conjugated poly(p‐CN‐phenylenevinylene) (PCNPV) containing both electron‐donating triphenylamine units and electron‐withdrawing cyano groups was prepared via Knoevenagel condensation in a good yield. Gel permeation chromatography suggested that the soluble polymer had a very high weight‐average molecular weight of 309,000. A bright and saturated red emission was observed under UV excitation in solution and film. Cyclic voltammetry showed that the polymer presented quasi‐reversible oxidation with a relatively low potential because of the triphenylamine unit. A single‐layer indium tin oxide/PCNPV/Mg–Ag device emitted a bright red light (633 nm). © 2004 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 42: 3947–3953, 2004  相似文献   

9.
A series of copolymers PCt‐co‐Poly(N‐vinylcarbazole) were synthesized through common radical polymerization, in which P‐Ct as a kind of mesogen‐jacketed liquid crystalline polymer was introduced, and the effects of copolymers composing variation on the optical properties of the polymers were studied. The structures and properties of the copolymers were characterized and evaluated by thermogravimetric (TGA), UV, photoluminescence (PL), cyclic voltammetry (CV), and electroluminescence (EL) analyses. All the polymers enjoy high thermal stability. PL peaks in the film show blue‐shift compared with in solutions and fluorescent quantum efficiency decreased with the N‐vinylcarbazole (nvk) content increasing, which supported the efficient energy transfer from nvk units to the oxadiazole units. CV revealed that, with the incorporation of nvk to the copolymer, these copolymers had high‐lying HOMO energy levels ranging from ?5.94 to ?6.09 eV. Single‐layer light‐emitting diodes (LEDs) with the configuration of ITO/PEDOT/PCt‐nvk/Mg:Ag/Ag were fabricated, which emit a blue light around 450 and 490 nm with a maximum luminance of 703 cd/m2. The device performance varies with the content of nvk and device configuration, with device configuration ( b ) and PCt‐nvk8 giving the best value of external quantum efficiency of 0.27%. We show here that by proper design copolymer structure and modification of device configuration can exhibit strong blue EL in higher external quantum efficiency. © 2008 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 46: 1843–1851, 2008  相似文献   

10.
Two series of new copolyfluorenes ( PFTP, PFTT ) were prepared by the Suzuki coupling reaction from two green‐emitting dibromo monomers (TP‐Br, TT‐Br) based on triphenylamine unit to be applied in white light electroluminescent devices. They were characterized by molecular weight determination, elemental analysis, DSC, TGA, absorption and photoluminescence spectra, and cyclic voltammetry. The estimated actual contents of the TP and TT chromophores were lower than 7.8 mol % and 1.9 mol % for PFTP and PFTT , respectively. In film state both copolyfluorenes showed photoluminescence at 400–470 and 470–600 nm originated from fluorene segments and the chromophores, respectively, due to incomplete energy transfer. Light‐emitting diodes with a structure of ITO/PEDOT:PSS/copolymer/Ca(50 nm)/Al(100 nm) showed major emission at 493–525 nm, plus minor emission at 400–470 nm when chromophore contents were low. The maximum brightness and maximum current efficiency of PFTP2 device were 8370 cd/m2 and 1.47 cd/A, whereas those of PFTT1 device were 9440 cd/m2 and 1.77 cd/A, respectively. Tri‐wavelength white‐light emission was realized through blending PFTT1 with poly(9,9‐dihexylfluorene) and a red‐emitting iridium complex, in which the maximum brightness and CIE coordinates were 6880 cd/m2 and (0.31, 0.33), respectively. © 2009 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 47: 1553–1566, 2009  相似文献   

11.
Two PPV‐based bipolar polymers containing 1,3,4‐oxadiazole pendant groups were synthesized via the Gilch polymerization reaction for use in light‐emitting diodes (LEDs). The resulting polymers were characterized using 1H and 13C NMR, elemental analysis, DSC, and TGA. These polymers were found to be soluble in common organic solvents and are easily spin‐coated onto glass substrates, producing high optical quality thin films without defects. The electro‐optical properties of ITO/PEDOT/polymer/Al devices based on these polymers were investigated using UV‐visible, PL, and EL spectroscopy. The turn‐on voltages of the OC1Oxa‐PPV and OC10Oxa‐PPV devices were found to be 8.0 V. The maximum brightness and luminescence efficiency of the OC1Oxa‐PPV device were found to be 544 cd/m2 at 19 V and 0.15 cd/A, respectively. © 2007 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 46: 1098–1110, 2008  相似文献   

12.
A new series of highly phenyl‐substituted polyfluorene derivatives were synthesized and characterized. The resulting polymers were amorphous and showed excellent solubility in common organic solvents, such as chloroform, tetrahydrofuran, xylene, toluene, chlorobenzene, and so forth. All possessed satisfied thermal stability with glass‐transition temperatures (Tg's) in the range of 79–115 °C. They emitted blue light with photoluminescent (PL) maximum peaks at about 408–412 nm in thin films. The PL efficiencies of the polymer films were measured around 30–33%. The highly phenylated pendants improved the Tg of polyfluorene without forming defects in the polymers and reduced their tendency to form aggregate/excimers. Polymer light‐emitting diodes were fabricated from these polymers with the configuration of indium tin oxide/polyethylenedioxythiophene:polystyrene sulfonic acid/polymer/Ba/Al, which emitted bright blue light with maximum peaks at 418–420 nm. The maximum external quantum efficiencies of these devices were 0.41–0.6%. © 2004 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 42: 2985–2993, 2004  相似文献   

13.
A series of light‐emitting hyperbranched poly(arylene ethynylene)s (HB‐PAEs) were prepared by the Sonogashira coupling from bisethynyl of carbazole, fluorene, or dialkoxybenzenes (A2 type) and tris(4‐iodophenyl)amine (B3 type). For comparison, two linear polymers (L‐PAEs) of the HB analogs were also synthesized. The polymers were characterized by Fourier transform infrared, NMR, and GPC. The HB polymers showed excellent solubility in chloroform, THF, and chlorobenzene when compared with their linear analogs. The number‐average molecular weight (Mn) of the polymers determined from GPC was found to be in the range of 18,600–34,200. The polymers were thermally stable up to 298–330 °C with only 5% weight loss. The absorption maxima of the polymers were between 354 and 411 nm with optical band gap in the range of 2.5–2.9 eV. The HB polymers were found to be highly fluorescent with photoluminescence quantum yields around 33–42%. The highest occupied molecular orbital energy levels of the polymers calculated from onset oxidation potentials were found to be in the range from ?5.83 to ?6.20 eV. Electroluminescence (EL) properties of three HB‐PAEs and one L‐PAE were investigated with device configuration ITO/PEDOT:PSS/Polymer/LiF/Al. The EL maxima of HB‐PAEs were found to be in the range of 507–558 nm with turn‐on voltages around 7.5–10 V and maximum brightness values of 316–490 cd/m2. At the same time, linear analog of one HB‐PAE was found to show a maximum brightness of 300 cd/m2 at a turn‐on voltage of 8.2 V. © 2010 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem, 2011  相似文献   

14.
15.
A series of thiophene‐containing photoactive copolymers consisting of alternating conjugated and nonconjugated segments were synthesized. The 1H NMR spectra corroborated the well‐defined structures, and the copolymers not only were soluble in common organic solvents but also had high glass‐transition temperatures (ca. 130 °C) and good thermal stability up to 390 °C. Introducing aliphatic functional groups, such as alkyl or alkoxyl, into chromophores of the copolymers redshifted the photoluminescence spectra and lowered the optical bandgaps. The electrochemical bandgaps calculated from cyclic voltammetry agreed with the optical bandgaps and thus indicated that electroluminescence and photoluminescence originated from the same excited state. The energy levels (highest occupied molecular orbital and lowest unoccupied molecular orbital) of all the copolymers were lower than those of poly[2‐methoxy‐5‐(2′‐ethylhexyloxy)‐1.4‐phenylenevinylene] MEH–PPV, indicating balanced hole and electron injection, which led to improved performance in both single‐layer and double‐layer polymeric‐light‐emitting‐diode devices fabricated with these copolymers. All the copolymers emitted bluish‐green or green light above the threshold bias of 5.0 V under ambient conditions. At the maximum bias of 10 V, the electroluminescence of a device made of poly(2‐{4‐[2‐(3‐ethoxy phenyl)ethylene]phenyl}‐5‐{4‐[2‐(3‐ethoxy,4‐1,8‐octanedioxy phenyl)ethylene]phenyl}thiophene) was 5836 cd/m2. The external electroluminescence efficiency decreased with the lifetime as the polymer degraded. © 2004 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 42: 3954–3966, 2004  相似文献   

16.
A series of fluorene derivatives containing nonsymmetric and bulky aromatic groups at C‐9 position were synthesized and used for the preparation of blue‐light‐emitting copolyfluorenes ( P1 – P4 ) by the Suzuki coupling polycondensation. The copolymers were characterized by molecular weight determination, elemental analysis, differential scanning calorimeter, thermogravimetric analysis, absorption and emission spectroscopy, cyclic voltammetry, and differential pulse voltammetry. Their decomposition temperatures and glass transition temperatures are 423–441 °C and >120 °C, respectively. In film state, the copolyfluorenes exhibit blue photoluminescence at 425–450 nm, which remains almost unchanged after annealing at 200 °C in air for 60 min. Polymer light‐emitting diodes [ITO/PEDOT:PSS/ P1 – P4 /Ca(50 nm)/Al(100 nm)] show stable blue‐light emission under device operation with the CIE co‐ordinates being between (0.16, 0.07) and (0.17, 0.09). The light‐emitting diodes devices from P1 and P3 containing electron‐deficient oxadiazole units display enhanced performance, with the maximum brightness and maximum current efficiency being (4510 cd/m2 and 2.40 cd/A) and (2930 cd/m2, 1.19 cd/A), respectively. © 2009 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 47: 2821–2834, 2009  相似文献   

17.
New series of hyperbranched polyfluorenes containing triarylpyrazoline cores, PFZ10 , PFZ20 , PFNZ10 , and PFNZ20 , have been synthesized according to the “A2 + A′2 + B3” Suzuki coupling method. The structures and property of the monomers and conjugated polymers were characterized by elemental analysis, gel permeation chromatography, cyclic voltammetry, thermogravimetric analysis, differential scanning calorimetry, and UV–visible absorption, 1H NMR, 13C NMR, and photoluminescence spectroscopies. All these polymers exhibited good solubility in common organic solvents and good thermal stability. The long‐wavelength emission of polyfluorenes had been effectively reduced in these hyperbranched polymers. Standard polymer light emitting devices (PLEDs) from PFZ10 , PFZ20 , PFNZ10 , and PFNZ20 , with the configuration of ITO/PEDOT/polymer/TPBI/Alq3/Mg:Ag, exhibited good electroluminescence (EL) properties The PLED based on PFNZ10 emitted pure blue light with a low turn‐on voltage of 5.3 V and a high EL efficiency of about 1.93%. © 2007 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 45: 5296–5307, 2007  相似文献   

18.
New electroluminescent polymers (poly(9,9′‐dioctylfluorene‐co‐thieno[3,2‐b]thiophene‐co‐benzo[2,3,5]thiadiazole) ( P1) and poly(9,9′‐dioctylfluorene‐co‐thieno[3,2‐b]thiophene‐co‐benzo[2,3,5]thiadiazole‐co‐[4‐(2‐ethylhexyloxyl)phenyl]diphenylamine ( P2) ) possess hole‐transporting or electron‐transporting units or both in the main chains. Electron‐deficient benzothiadiazole and electron‐rich triphenylamine moieties were incorporated into the polymer backbone to improve the electron‐transporting and hole‐transporting characteristics, respectively. P1 and P2 show greater solubility than poly(9,9′‐dioctylfluorene‐co‐thieno[3,2‐b]thiophene ( PFTT ), without sacrificing their good thermal stability. Moreover, owing to the incorporation of the electron‐deficient benzothiadiazole unit, P1 and P2 exhibit remarkably lower LUMO levels than PFTT , and thus, it should facilitate the electron injection into the polymer layer from the cathode electrode. Consequently, because of the balance of charge mobility, LED devices based on P1 and P2 exhibit greater brightness and efficiency (up to 3000 cd/m2 and 1.35 cd/A) than devices that use the pristine PFTT . © 2005 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 44: 243–253, 2006  相似文献   

19.
A soluble cyano‐substituted poly[(1,3‐phenylene vinylene)‐alt‐(1,4‐phenylene vinylene)] derivative ( 9 ) was synthesized and characterized. Comparison between 9 and its model compound ( 10 ) showed that the chromophore in 9 remained to be well defined as a result of a π‐conjugation interruption at adjacent m‐phenylene units. The attachment of a cyano substituent only at the β position of the vinylene allowed the maximum electronic impact of the cyano group on the optical properties of the poly(p‐phenylene vinylene) material. At a low temperature (?108 or ?198 °C), the vibronic structures of 9 and 10 were partially resolved. The absorption and emission spectra of a film of 9 were less temperature‐dependent than those of a film of 10 , indicating that the former had a lower tendency to aggregate. A light‐emitting diode (LED) based on 9 emitted yellow light (λmax ≈ 578 nm) with an external quantum efficiency of 0.03%. © 2003 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 41: 3149–3158, 2003  相似文献   

20.
This article reports the synthesis and characterization of a novel thermally crosslinkable hole‐transporting poly (fluorene‐co‐triphenylamine) (PFO‐TPA) by Suzuki coupling reaction, followed with its application in the fabrication of multilayer light‐emitting diodes by wet processes. The thermal, photophysical, and electrochemical properties of PFO‐TPA were investigated by differential scanning calorimeter, thermogravimetric analysis, optical spectroscopy, and cyclic voltammetry, respectively. Thermally crosslinked PFO‐TPA, through pendant styryl groups, demonstrates excellent thermal stability (Td > 400 °C, Tg = 152 °C), solvent resistance, and film homogeneity. Its highest occupied molecular orbital level (?5.30 eV) lies between those of PEDOT:PSS (?5.0 ~ ?5.2 eV) and poly(9,9‐dioctylfluorene) (PFO: ?5.70 eV), forming a stepwise energy ladder to facilitate hole injection. Multilayer device with crosslinked PFO‐TPA as hole‐injection layer (HIL) (ITO/PEDOT:PSS/HIL/PFO/LiF/Ca/Al) was readily fabricated by successive spin‐coating processes, its maximum luminance efficiency (3.16 cd/A) were about six times higher than those without PFO‐TPA layer (0.50 cd/A). The result of hole‐only device also confirmed hole‐injection and hole‐transport abilities of crosslinked PFO‐TPA layer. Consequently, the device performance enhancement is attributed to more balanced charges injection in the presence of crosslinked PFO‐TPA layer. The thermally crosslinkable PFO‐TPA is a promising material for the fabrication of efficient multilayer polymer light‐emitting diodes because it is not only a hole‐transporting polymer but also thermally crosslinkable. © 2010 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem, 2011  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号