首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 25 毫秒
1.
New class of photo and electrically switchable azobenzene containing pendant bent‐core liquid crystalline monomers ( AZBM 1, 2 , and 3 ) and their polymers ( AZBP 1, 2 , and 3 ) are reported. The synthesized precursors, monomers, and polymers were characterized by FT‐IR, 1H, and 13C NMR spectroscopy. Thermal stability of polymers was examined by thermogravimetric analysis and revealed stable up to 260 °C. The mesophase transition of monomers and polymers are observed through polarized optical microscopy (POM) and further confirmed by differential scanning calorimetry (DSC). The electrically switching property of monomers and their polymers were studied by electro‐optical method. Among the three monomers AZBM 1, 2 , and 3 , AZBM 1 and 2 exhibit antiferroelectric (AF) switching and AZBM 3 exhibits ferroelectric (F) switching behavior. On the other hand, low molecular weight polymers ( AZMP 1, 2 , and 3 ) show weak AF and F switching behavior. The photo‐switching properties of bent‐core azo polymers are investigated using UV‐vis spectroscopy, trans to cis isomerization occurs around 25 s for AZBP‐1 and 30 s for AZBP‐2 and 3 in chloroform, whereas reverse processes take place around 80 and 90 s. © 2012 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem, 2013  相似文献   

2.
Three main chain thermotropic liquid crystalline (LC) azobenzene polymers were synthesized using the azobenzene twin molecule (P4P) having the structure Phenylazobenzene‐tetraethyleneglycol‐Phenylazobenzene as the AA monomer and diols like diethylene glycol, tetraethylene glycol (TEG), and hexaethylene glycol as the BB comonomer. Terminal ? C(O)OMe units on P4P facilitated transesterification with diols to form polyesters. All polymers exhibited stable smectic mesophases. One of the polymers, Poly(P4PTEG) was chosen to prepare composite polymer electrolytes with LiCF3SO3 and ionic conductivity was measured by ac impedance spectroscopy. The polymer/0.3 Li salt complex exhibited a maximum ionic conductivity in the range of 10?5 S cm?1 at room temperature (25 °C), which increased to 10?4 S cm?1 above 65 °C. The temperature dependence of ionic conductivity was compared with the phase transitions occurring in the sample and it was observed that the glass transition had a higher influence on the ionic conductivity compared to the ordered LC phase. Reversible ionic conductivity switching was observed upon irradiation of the polymer/0.3 Li salt complex with alternate UV and visible irradiation. © 2014 Wiley Periodicals, Inc. J. Polym. Sci., Part A: Polym. Chem. 2015 , 53, 629–641  相似文献   

3.
Well‐defined azobenzene‐containing side‐chain liquid crystalline diblock copolymers composed of poly[6‐(4‐methoxy‐azobenzene‐4′‐oxy) hexyl methacrylate] (PMMAZO) and poly(γ‐benzyl‐L ‐glutamate) (PBLG) were synthesized by click reaction from alkyne‐ and azide‐functionalized homopolymers. The alkyne‐terminated PMMAZO homopolymers were synthesized by copper‐mediated atom transfer radical polymerization with a bromine‐containing alkyne bifunctional initiator, and the azido‐terminated PBLG homopolymers were synthesized by ring‐opening polymerization of γ‐benzyl‐L ‐glutamate‐N‐carboxyanhydride in DMF at room temperature using an amine‐containing azide initiator. The thermotropic phase behavior of PMMAZO‐b‐PBLG diblock copolymers in bulk were investigated using differential scanning calorimetry and polarized light microscopy. The PMMAZO‐b‐PBLG diblock copolymers exhibited a smectic phase and a nematic phase when the weight fraction of PMMAZO block was more than 50%. Photoisomerization behavior of PMMAZO‐b‐PBLG diblock copolymers and the corresponding PMMAZO homopolymers in solid film and in solution were investigated using UV–vis. In solution, trans–cis isomerization of diblock copolymers was slower than that of the corresponding PMMAZO homopolymers. These results may provide guidelines for the design of effective photoresponsive anisotropic materials. © 2012 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem, 2013  相似文献   

4.
This work focuses on the design, synthesis, and characterization of a series of mesogen‐jacketed liquid crystalline polymers (MJLCPs), poly(alkyl 4′‐(octyloxy)‐2‐vinylbiphenyl‐4‐carboxylate) (pVBP(m,8), m = 1, 2, 4, 6, 8, 10, 12). For the first time, we realized asymmetric substitutions in the mesogens of MJLCPs. The polymers obtained by conventional free radical polymerization were investigated in detail by a combination of various techniques, such as differential scanning calorimetry, wide‐angle X‐ray diffraction, and polarized light microscopy. Our results showed that all the polymers were thermally stable, and their glass transition temperatures decreased when m increased. The liquid crystalline (LC) phases that developed at high temperatures and disappeared at low temperatures were strongly dependent on the difference in lengths of alkyl groups on the 4 and 4′ substitution positions of the side‐chain biphenyl. While polymer pVBP(1,8) was not liquid crystalline, columnar liquid crystalline phases were observed for all other pVBP(m,8) (m = 2, 4, 6, 8, 10, 12) polymers. Polymer pVBP(8,8) showed a tetragonal columnar nematic liquid crystalline phase, and the other LC polymers exhibited columnar nematic phases. In additions, the smaller the difference in the lengths of the terminal alkyls, the easier the development of the liquid crystalline phase. Birefringence measurements showed that solution‐cast polymer films exhibited moderately high positive birefringence values, indicating potential applications as optical compensation films for liquid crystal displays. © 2011 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem, 2011  相似文献   

5.
On the basis of the concept of mesogen‐jacketed liquid crystalline polymers, a series of new methacrylate monomers, (2,5‐bis[2‐(4′‐alkoxyphenyl) ethynyl] benzyl methacrylate (MACn, n = 4, 6, 8, 10, and 12) and 2,5‐bis[2‐(6′‐decanoxynaphthyl) ethynyl] benzyl methacrylate (MANC10), and their polymers, PMACn (n = 4, 6, 8, 10, and 12) and PMANC10 were synthesized. The bistolane mesogen with large π‐electron conjugation were side‐attached to the polymer backbone via short linkages. Various characterization techniques such as differential scanning calorimetry, wide‐angle X‐ray diffraction, and polarized light microscopy were used to study their mesomorphic phase behavior. The polymer PMACn with shorter flexible substituents (n = 4) forms the columnar nematic (?N) phase, but other polymers with longer flexible tails (n = 6, 8, 10, and 12) can develop into a smetic A (SA) phase instead of a ?N phase. The PMANC10 containing naphthyl can also form a well‐defined SA phase. © 2010 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem, 2010  相似文献   

6.
Nonlinear optical (NLO) rigid main‐chain polyesters containing azobenzene mesogens with high thermal and temporal stabilities were synthesized from derivatives of hydroxyphenylazobenzoic acid. The NLO properties of the homopolymer, poly[4‐(4‐hydroxy‐3‐methyl phenyl)azo]benzoic acid, and copolymers of 4‐[(4‐hydroxy‐3‐methylphenyl)azo]benzoic acid, 4‐[(4‐hydroxy‐2‐methylphenyl)azo]benzoic acid, and 4‐[(4‐hydroxy‐2‐pentadecyl phenyl)azo]benzoic acid (PSCpHBA) with p‐HBA were measured by the Maker fringe technique. The thermal and liquid‐crystalline (LC) phase behaviors of the polymers were examined by differential scanning calorimetry, a thermal‐stimulated polarization current, and polarized light microscopy. The polymers except PSCpHBA exhibited nematic‐threaded and Schlieren textures. The LC orientations give rise to an enhanced NLO response. The polymers had high thermal and temporal stabilities for second‐harmonic generation activity because of their rigid aromatic backbone. This study suggests that the rigid aromatic main chain exhibiting an LC phase is a promising simple method to synthesize highly stable NLO polymers. © 2003 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 41: 1527–1535, 2003  相似文献   

7.
Luminescent liquid crystalline polymers consisting of Iridium attached to polysiloxanes are prepared. 4-Cyanophenyl 4-(allyloxy) benzoate (M1) and an Iridium complex (Ir-M2) grafted to poly(methylhydrogeno)siloxane are used for the preparation of the Iridium-containing liquid crystalline polymers. The chemical structures are characterised by Fourier transform infrared spectroscopy and 1H NMR. The mesomorphic properties and phase behaviour are investigated by differential scanning calorimetry, thermogravimetric analysis, polarising optical microscopy and X-ray diffraction. The polymers containing <1.2 mol% of the Iridium ions reveal reversible mesomorphic phase transition, wide mesophase temperature ranges and high thermal stability. The introduction of the Iridium ions does not change the liquid crystalline state of polymer systems; on the contrary, the polymers are enabled with the luminescent properties. With the Iridium ion contents ranging between 0.3 and 1.2 mol%, luminescent intensity of polymers gradually increased. The temperature dependence of luminescent intensity was studied in the liquid crystalline phase.  相似文献   

8.
This article reviews our work on the development and optimization of chiral, nonpolar media with large second‐order nonlinear optical responses. We show how molecular engineering, theory, and measurements can be used to optimize this promising class of nonlinear optical materials. We describe how supramolecular alignment into easily processable materials takes advantage of the relevant molecular hyperpolarizabilities. A wide variety of techniques can be used to fabricate bulk materials belonging to the chiral nonpolar symmetry groups, D and D2. The microscopic chromophore alignment schemes that optimize the nonlinear optical response in such materials are deduced from general symmetry considerations for both molecules and bulk. We also speculate on the possible applications of such materials as image‐plane modulators. © 2003 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 41: 2744–2754, 2003  相似文献   

9.
New side‐chain liquid‐crystalline polymers containing both cholesteric and thermochromic side groups were synthesized. Their chemical structures were confirmed with elemental analyses and Fourier transform infrared, proton nuclear magnetic resonance, and carbon‐13 nuclear magnetic resonance spectra. The mesogenic properties and phase behavior were investigated with differential scanning calorimetry, thermogravimetric analysis, polarizing optical microscopy, and X‐ray diffraction measurements. The effect of the concentration of dye side groups on the phase behavior of the polymers was examined. The polymers showed smectic or cholesteric phases. Those polymers containing less than 20 mol % dye groups had good solubility, reversible phase transitions, wider mesophase temperature ranges, and higher thermal stability. The experimental results demonstrated that the isotropization temperature and mesophase temperature ranges decreased with an increasing concentration of dye groups. © 2004 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 42: 3870–3878, 2004  相似文献   

10.
The first‐ and second‐generation dendronized polymers containing azobenzene mesogen were designed and successfully synthesized via free radical polymerization. The chemical structures of the monomers were confirmed by elemental analysis, 1H NMR, and 13C NMR. The molecular characterizations of the polymers were performed with 1H NMR and gel permeation chromatography. The phase structures and transition behaviors were studied using differential scanning calorimetry, polarized light microscopy, and small‐angle X‐ray scatter experiments. The experiment results revealed that the first‐generation dendronized polymer exhibited liquid crystalline behavior of the conventional side‐chain liquid crystalline polymer with azobenzene mesogen, that is, the polymer exhibited smectic phase structure at lower temperature and nematic phase structure at higher temperature. However, the second‐generation dendronized polymers exhibited more versatile intriguing liquid crystalline structures, namely smectic phase structure at lower temperature and columnar nematic phase structure at higher temperature, and moreover, the phase structure still remained before the decomposition temperature. © 2010 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 48: 1149–1159, 2010  相似文献   

11.
A series of optically active methacrylic homopolymers, poly[(4‐{4′‐[(S)‐2‐methyl‐1‐butyloxycarbonyl]phenylazo}phenoxyl)x‐methylene methacrylate] (x = 0, 2, 6, or 11), were synthesized. The structures of the polymers were characterized by IR, 1H NMR, UV, differential scanning calorimetry, and gel permeation chromatography. The chiroptical properties of the polymers in films were investigated with circular dichroism (CD) measurements. The CD and UV spectra of the films suggested that CD absorptions occurred in the films of the polymers with long spacers (x = 6 or 11) but not in the films of the polymers with short spacers (x = 0 or 2). After irradiation with linearly polarized light at 442 nm, the CD values were amplified in all the polymeric films. The amplificatory values of the CD bands in the absorption region (260–360 nm) of azobenzene chromophores suggested that the spacer length had an effect on both the transfer of chirality and photoinduced chirality in the polymeric films. The largest level of photoinduced chirality was induced in the polymer containing six methylene units. © 2006 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 44: 3210–3219, 2006  相似文献   

12.
Diblock copolymers with polymethyl methacrylate and side chain liquid crystalline (LC) azopolymethacrylate blocks were synthesized by atom transfer radical polymerization (ATRP). The azobenzene content in these copolymers ranges from 52 to 7 wt %. For an azo content down to 20% they exhibit a LC behavior similar to that of the azo homopolymers. Thin films of these copolymers were characterized by transmission electron microscopy (TEM). A lamellar nanostructure was observed for azo content down to 20 wt %, while no structure is observed for the copolymer with a 7% azo content. The optical anisotropy induced in these films by illumination with linearly polarized 488 nm light was studied and the results compared with those of the azo homopolymer and of a random copolymer with a similar composition. The formation of azo aggregates inside the azo blocks is strongly reduced in going from the homopolymer to the copolymers. Photoinduced azo orientation perpendicular to the 488 nm light polarization was found in all the polymers. The orientational order parameter is very similar in the homopolymer and in the block copolymers with an azo content down to 20 wt %, while it is much lower in the random copolymer and in the 7 wt %. © 2006 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 45: 1899–1910, 2007  相似文献   

13.
The synthesis of a series of azobenzene containing liquid crystalline methacrylic homopolymers, poly(4-ω-methacryloyloxy-hexyloxy-4′-ethoxyazobenzene) [Poly(M6A)], with distinct average chain lengths and low polydispersity has been achieved by Atom Transfer Radical Polymerization (ATRP) in THF solution using allyl 2-bromoisobutyrate as initiator and Cu(I)Br as catalyst. Under the adopted conditions the living centers concentration is found to be constant throughout the polymerization process and well defined chain end-groups are obtained. All the obtained polymeric samples, having average molecular mass ranging from 3300 to 14000 g/mol, exhibit smectic and nematic liquid-crystalline phases on heating, with transition temperatures strongly dependent on polymerization degree, as characterized by differential scanning calorimetry and polarized optical microscopy.The photomechanical effects (i.e. the dependence of volume and density) exhibited upon trans-to-cis and cis-to-trans photoisomerization of the azobenzene mesogenic groups have been investigated by ellipsometry and related to molecular weight, with particular attention to important parameters for potential applications such as the relative variation of total volume, response time, stability and reproducibility.  相似文献   

14.
We report novel liquid crystalline (LC) polymers containing pendant azobenzene moieties with n‐dodecyl substituents and ethyleneoxy spacers of different lengths and describe their selective detection behaviors to alkali metal ions. The new azopolymers produce homogenous smectic phases with a typical fan‐shaped texture. UV‐Vis and 1H NMR studies confirm that the azopolymers selectively bind to Li+ and Na+, but do not complex with K+, Ba2+, Mg2+, or Ca2+. Both the ethyleneoxy spacer and azobenzene units participate in binding to Li+ and Na+ cations in solution. Interestingly, after formation of the complexed structure, the ratio of cis to trans conformer is considerably increased suggesting stronger interactions of the cis conformer with alkali metal ions. Irradiation of the complexed structure with 365 nm UV induces conversion of the uncomplexed trans to the cis. These findings suggest a great potential of the LC azopolymers as selective sensors or separation membranes for alkali metal ions. © 2016 Wiley Periodicals, Inc. J. Polym. Sci., Part A: Polym. Chem. 2016 , 54, 1713–1723  相似文献   

15.
The solution‐phase behavior of three main‐chain viologen polymers, which are composed of isomeric xylyl units and triflimide as a counterion, was studied in methanol, dimethylformamide, acetonitrile, and dimethyl sulfoxide as solvents microscopically under crossed polarizers. Each of them exhibited a lyotropic lamellar phase in both polar protic and aprotic solvents. Their C* for the formation of biphasic solutions (1–5 wt %) and concentrations (20–30 wt %) for the lyotropic solutions in methanol was much lower than those in polar aprotic solvents (20–71 and 60–81 wt %, respectively). Their high solubility, high C* for the formation of biphasic solutions, and high concentrations for the formation of lyotropic solutions in polar aprotic solvents were related to the significant reduction of strong ionic interactions between triflimide and 4,4′‐bipyridinium ions in each of these viologen polymers. They were the first examples of viologen polymers that exhibited a lyotropic phase in polar aprotic solvents. © 2002 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 40: 2015–2024, 2002  相似文献   

16.
A series of novel crown ether‐containing photochromic comb‐shaped liquid crystalline polyacrylates with different macromolecular structure of side groups were synthesized and investigated. Phase behavior, optical and photo‐optical properties of thin spin‐coated films of these polymers were studied. A special attention was paid to a comparative study of the photo‐orientation phenomena occurring in the polymer films under a polarized light action. It was shown that complex formation with the potassium ions results in the decrease in degree of the photoinduced order that can be used for the creation of new materials for sensor devices. © 2010 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem, 2011  相似文献   

17.
A series of new norbornene carboxylic cholesteryl ester monomers with and without alkyl spacers, NBCh, and NBCh‐n , respectively, were synthesized. New side‐chain liquid crystalline homopolymers, PNBCh and PNBCh‐n , were cleanly prepared using NBCh and NBCh‐n , respectively, with Grubbs 2nd generation catalyst. Molecular and structural characterization of monomers and polymers were carried out by nuclear magnetic resonance, NMR, Fourier transform infrared, FT‐IR, spectroscopy, and gel permeation chromatography, GPC. The thermal and liquid crystalline properties of the homopolymers were investigated by differential scanning calorimetry, DSC, thermogravimetric analysis, TGA, and polarized optical microscopy, POM. Small angle and wide angle X‐ray studies of PNBCh‐n in powder and fiber states not only confirmed the formation of smectic A mesophases, but also established their morphologies. © 2009 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 47: 2690–2701, 2009  相似文献   

18.
Three kinds of chiral saccharide‐containing liquid crystalline (LC) acetylenic monomers were prepared by click reaction between 2‐azidoethyl‐2,3,4,6‐tetraacetyl‐β‐D ‐galactopyranoside and 1‐biphenylacetylene 4‐alkynyloxybenzoate. The obtained monomers were polymerized by WCl6‐Ph4Sn to form three side‐chain LC polyacetylenes containing 1‐[2‐(2,3,4,6‐tetraacetyl‐β‐D ‐galactopyranos‐1‐yl)‐ethyl]‐1H‐[1,2,3]‐triazol‐4′‐biphenyl 4‐alkynyloxybenzoate side groups. All monomers and polymers show a chiral smectic A phase. Self‐assembled hiearchical superstructures of the chiral saccharide‐containing LCs and LCPs in solution state were studied by field‐emission scanning electron microscopy. Because of the LC behavior, the LC molecules exhibit a high segregation strength for phase separation in dilute solution (THF/H2O = 1:9 v/v). The self‐assembled morphology of LC monomers was dependent upon the alkynyloxy chain length. Increasing the alkynyloxy chain length caused the self‐assembled morphology to change from a platelet‐like texture ( LC‐6 ) to helical twists morphology ( LC‐11 and LC‐12 ). Furthermore, the helical twist morphological structure can be aligned on the polyimide rubbed glass substrate to form two‐dimensional ordered helical patterns. In contrast to LC monomers, the LCP‐11 self‐assembled into much more complicate morphologies, including nanospheres and helical nanofibers. These nanofibers are evolved from the helical cables ornamented with entwining nanofibers upon natural evaporation of the solution in a mixture with a THF/methanol ratio of 3:7. © 2009 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 47: 6596–6611, 2009  相似文献   

19.
A series of novel comb polymers, poly{2,5‐bis[(4‐methoxyphenyl)oxycarbonyl]styrene}‐g‐polystyrene (PMPCS‐g‐PS), with mesogen‐jacketed rigid side chains were synthesized by the “grafting onto” method from α‐yne‐terminated PMPCS (side chain) and poly(vinylbenzyl azide) (backbone) by Cu(I)‐catalyzed 1,3‐dipolar cycloaddition click reaction. The α‐yne‐terminated PMPCS was synthesized by Cu(I)‐catalyzed atom transfer radical polymerization initiated by a yne‐functional initiator. Poly(vinylbenzyl azide) was prepared by polymerizing vinylbenzyl chloride using nitroxide mediated radical polymerization to obtain poly(vinylbenzyl chloride) as the precursor which was then converted to the azide derivative. The chemical structure and architectures of PMPCS comb polymers were confirmed by 1H NMR, gel permeation chromatography, and multiangle laser light scattering. Both surface morphologies and solution behaviors were investigated. Surface morphologies of PMPCS combs on different surfaces were investigated by scanning probe microscopy. PMPCS combs showed different aggregation morphologies when depositing on silicon wafers with/without chemical modification. The PMPCS comb polymers transferred to polymer‐modified silicon wafers using the Langmuir‐Blodgett technique showed a worm‐like chain conformation. © 2011 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem, 2012  相似文献   

20.
When the flexible terminal substituent changes from butoxy to hexyloxy or longer, smectic C (SC) liquid crystalline phase was firstly reported to develop from a kind of mesogen‐jacketed liquid crystalline polymer (MJLCP) whose mesogenic side groups are unbalancedly bonded to the main chain without spacers. A series of MJLCPs, poly[4,4′‐bis(4‐alkoxyphenyl)‐2‐vinylbiphenyl(carboxide)] (nC2Vp, n is the number of the carbons in the alkoxy groups, n = 2, 4, 6, 8, 10, and 12) were designed and synthesized successfully via free radical polymerization. The molecular weights of the polymers were characterized with gel permeation chromatography, and the liquid crystalline properties were investigated by differential scanning calorimetry, polarized light microscopy experiments, and 1D, 2D wide‐angle X‐ray diffraction. Comparing with the butoxy analog, the polymer with unbalanced mesogenic core and shorter flexible substituents (n = 2, 4) keeps the same smectic A (SA) phase, but other polymers with longer terminal flexible substituents (n = 6, 8, 10, and 12) can develop into a well‐defined SC phase instead of SA phase. © 2008 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 47: 505–514, 2009  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号