共查询到20条相似文献,搜索用时 15 毫秒
1.
Jakob J. Brondijk Kamal Asadi Paul W. M. Blom Dago M. de Leeuw 《Journal of Polymer Science.Polymer Physics》2012,50(1):47-54
Most of the envisaged applications of organic electronics require a nonvolatile memory that can be programmed, erased, and read electrically. Ferroelectric field‐effect transistors (FeFET) are especially suitable due to the nondestructive read‐out and low power consumption. Here, an analytical model is presented that describes the charge transport in organic FeFETs. The model combines an empirical expression for the ferroelectric polarization with a density dependent hopping charge transport in organic semiconductors. Transfer curves can be calculated with parameters that are directly linked to the physical properties of both the comprising ferroelectric and semiconductor materials. A unipolar FeFET switches between a polarized and depolarized state, and an ambipolar FeFET switches between two stable polarized states. A good agreement between experimental and calculated current is obtained. The method is generic; any other analytical model for the polarization and charge transport can be easily implemented and can be used to identify the origin of the different transconductances reported in the literature. © 2011 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys, 2011 相似文献
2.
Huajie Chen Yunlong Guo Zupan Mao Dong Gao Gui Yu 《Journal of polymer science. Part A, Polymer chemistry》2014,52(14):1970-1977
Two furan‐flanked polymers poly{3,6‐difuran‐2‐yl‐2,5‐di(2‐octyldodecyl)‐pyrrolo[3,4‐c]pyrrole‐1,4‐dione‐alt‐thienylenevinylene} (PDVFs), with a highly π‐extended diketopyrrolopyrrole backbone, are developed for solution‐processed high‐performance polymer field‐effect transistors (FETs). Atomic force microscopy and grazing incidence X‐ray scattering analyses indicate that PDVF‐8 and PDVF‐10 films exhibit a similar nodular morphology with the ultrasmall lamellar distances of 16.84 and 18.98 Å, respectively. When compared with the reported polymers with the same alkyl substitutes, this is the smallest d‐spacing value observed to date. This closed lamellar crystallinity facilitates charge carrier transport. Therefore, polymer thin‐film transistors fabricated from as‐spun PDVF‐8 films exhibit a high hole mobility exceeding 1.0 cm2 V?1 s?1 with a current on/off ratio above 106. After annealing treatment at 100 °C in air, the highest hole mobility of PDVF‐8‐based FETs was significantly improved to 1.90 cm2 V?1 s?1, which is among the highest values of the reported FET devices fabricated from polymer thin films based on this mild annealing temperature. In contrast, long alkyl‐substituted PDVF‐10 exhibited a relatively low hole mobility of 1.65 cm2 V?1 s?1 mainly resulting from low molecular weight. This work demonstrated that PDVFs would be promising semiconductors for developing cost‐effective and large‐scale production of flexible organic electronics. © 2014 Wiley Periodicals, Inc. J. Polym. Sci., Part A: Polym. Chem. 2014 , 52, 1970–1977 相似文献
3.
Mei‐Hsiu Lai Chu‐Chen Chueh Wen‐Chang Chen Jyh‐Lih Wu Fang‐Chung Chen 《Journal of polymer science. Part A, Polymer chemistry》2009,47(3):973-985
Synthesis, properties, and optoelectronic device applications of four new bis‐[4‐(2‐ethyl‐hexyloxy)‐phenyl]quinoxaline( Qx(EHP) )‐based donor‐acceptor conjugated copolymers are reported, in which the donors are thiophene( T ), dithiophene( DT ), dioctylfluorene( FO ), and didecyloxyphenylene( OC10 ). The optical band gaps (Eg) of PThQx(EHP) , PDTQ(EHP) , POC10DTQ(EHP) , and PFODTQ(EHP) estimated from the onset absorption are 1.57, 1.65, 1.77, and 1.92 eV, respectively. The smallest Eg of PThQx(EHP) among the four copolymers is attributed to the balanced donor/acceptor ratio and backbone coplanarity, leading to a strong intramolecular charge transfer. The hole mobilities obtained from the thin film transistor (TFT) devices of PThQx(EHP) , PDTQ(EHP) , POC10DTQ(EHP) , and PFODTQ(EHP) are 2.52 × 10?4, 4.50 × 10?3, 4.72 × 10?5, and 9.31 × 10?4 cm2 V?1 s?1, respectively, with the on‐off ratios of 2.00 × 104, 1.89 × 103, 4.07 × 103, and 2.30 × 104. Polymer solar cell based on the polymer blends of PFODTQ(EHP) , PThQx(EHP) , POC10DTQ(EHP) , and PDTQ(EHP) with [6, 6]‐phenyl C61‐butyric acid methyl ester (PCBM) under illumination of AM1.5 (100 mW cm?2) solar simulator exhibit power conversion efficiencies of 1.75, 0.92, 0.79, and 0.43%, respectively. The donor/acceptor strength, molecular weight, miscibility, and energy level lead to the difference on the TFT or solar cell characteristics. The present study suggests that the prepared bis[4‐(2‐ethyl‐hexyloxy)‐phenyl]quinoxaline donor‐acceptor conjugated copolymers would have promising applications on electronic device applications. © 2008 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 47: 973–985, 2009 相似文献
4.
Youjun He Weiping Wu Yunqi Liu Yongfang Li 《Journal of polymer science. Part A, Polymer chemistry》2009,47(20):5304-5312
Poly(3‐[2‐(5‐hexyl‐2‐thienyl) ethenyl]‐2,2′‐bithiophene) ( P2 , see Scheme 1 ) with conjugated thienylvinyl side chain was synthesized by copolymerization of the thiophene units with and without conjugated side chain with Pd‐catalyzed Stille coupling method. For comparison, P1 with the hexyl side chain instead of conjugated side chain was also synthesized. P2 film shows broad absorption in the visible region with absorption edge at about 700 nm. The solution‐processed polymer field‐effect transistors were fabricated and characterized with bottom gate/top contact geometry. The organic field‐effect transistors (OFET) based on P2 showed an average hole mobility of about 0.034 cm2/Vs (the highest value reached 0.061 cm2/Vs) upon annealing at about 180 °C for 30 min, with a threshold voltage of ?1.15 V and an on/off ratio of 104 with n‐octadecyltrichlorosilane (OTS) modified SiO2 substrate. In comparison, the OFET based on P1 displayed a hole mobility of 8.9 × 10–4 cm2/Vs and an on/off ratio of 104 with OTS modified SiO2 substrate. The results indicate that the polythiophene derivative with conjugated thienylvinyl side chain is a promising polymer for the application in polymer field‐effect transistors. © 2009 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 47: 5304–5312, 2009 相似文献
5.
Kun Lu Xiangnan Sun Yunqi Liu Chongan Di Hongxia Xi Gui Yu Xike Gao Chunyan Du 《Journal of polymer science. Part A, Polymer chemistry》2009,47(5):1381-1392
A series of novel branched polythiophene derivatives bearing different densities of vinylene‐bridges as linking chains were synthesized by a general synthetic strategy. The organic field‐effect transistors, which were fabricated by spin‐coating the polymer solutions onto octadecyltrichlorosilane‐modified SiO2/Si substrates with top‐contact configuration, afforded a high mobility of 8.0 × 10?3 cm2 V?1 s?1 with an on/off ratio greater than 104 and a threshold voltage of about ?3 V in saturation regime. The devices based on these polymers possessed better performance than those of polymers without conjugated bridges and polymers with longer conjugated bridges. These results demonstrated that the combination of conjugated polythiophene backbones and vinylene‐bridges would improve the carrier mobility. As an emerging class of conjugated materials, polymers with vinylene‐bridges as linking chains would open up new opportunities in organic electronics, and their applications in organic electronics are promising. © 2009 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 47: 1381–1392, 2009 相似文献
6.
Jinjun Shao Jingjing Chang Gaole Dai Chunyan Chi 《Journal of polymer science. Part A, Polymer chemistry》2014,52(17):2454-2464
A pyromellitic diimide building block, 2,6‐bis(2‐decyltetradecyl)?4,8‐di(thiophen‐2‐yl)pyrrolo[3,4‐f]isoindole‐1,3,5,7(2H,6H)‐tetraone ( 4 ), is synthesized. Based on this building block and other electron‐rich units such as 2,2′‐bithiophene, thieno[3,2‐b]thiophene and 4,8‐bis(dodecyloxy)benzo[1,2‐b:4,5‐b′]dithiophene, three conjugated polymers P1 , P2 , and P3 are prepared in good yield via Stille coupling polymerization. These new copolymers have good solubility in common organic solvents and exhibit good thermal stability. The optical, electrochemical, and thermal properties of these polymers P1–P3 are carefully investigated, and their applications in solution‐processed organic field‐effect transistors are also studied. © 2014 Wiley Periodicals, Inc. J. Polym. Sci., Part A: Polym. Chem. 2014 , 52, 2454–2464 相似文献
7.
Hoyoul Kong Sung Heum Park Nam Sung Cho Shinuk Cho Hong‐Ku Shim 《Journal of polymer science. Part A, Polymer chemistry》2012,50(19):4119-4126
New semiconducting copolymers, poly((TIPS‐ADT)‐(4,4′‐didodecyl‐2,2′‐bithiophene)) (PTADT2) and poly((TIPS‐ADT)‐(2,2′‐(4,4′‐didodecyl‐2,2′‐bithiophene)dithiophene)) (PTADT4) , produced by incorporating 5,11‐bis(triisopropylsilylethynyl) anthra[2,3‐b:7,6‐b']dithiophene (TIPS‐ADT) and alkyl‐thiophene derivatives were synthesized via Stille coupling polymerization. The optical, electrochemical, structural, field‐effect transistor, and solar cell properties of the polymers were investigated. The polymers showed good solubility at room temperature in common organic solvents due to their abundant side groups including TIPS and dodecyl side chains. Both polymers showed very broad UV absorption spectra covering the spectral range from 300 to 750 nm as a result of the combination of the different absorption ranges of the TIPS‐ADT unit (short wavelength region) and thiophene derivatives (long wavelength region). The FET device fabricated using PTADT4 containing additional unsubstituted thiophene rings as a spacer between TIPS‐ADT and thiophene derivatives showed a higher hole mobility (5.7 × 10?4 cm2/V s) than the PTADT2 device (2.8 × 10?5 cm2/V s), due to the improved intermolecular ordering caused by the reduced steric hindrance between bulky side chain groups. In addition, the PTADT4 :(6,6)‐phenyl‐C70‐butyric acid methyl ester (PC70BM) device showed an enhanced power conversion efficiency (PCE) of 1.30% compared with the PTADT2 :PC70BM device (PCE of 0.55%) under AM 1.5G irradiation (100 mW/cm2). © 2012 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem, 2012 相似文献
8.
Xiaochen Wang Hao Luo Yeping Sun Maojie Zhang Xiaoyu Li Gui Yu Yunqi Liu Yongfang Li Haiqiao Wang 《Journal of polymer science. Part A, Polymer chemistry》2012,50(2):371-377
A novel fused ladder alternating D–A copolymer, PIDT–DPP, with alkyl substituted indacenodithiophene (IDT) as donor unit and diketopyrrolopyrrole (DPP) as acceptor unit, was designed and synthesized by Pd‐catalyzed Stille‐coupling method. The copolymer showed good solubility and film‐forming ability combining with good thermal stability. PIDT–DPP exhibited a broad absorption band from 350 to 900 nm with an absorption peak centered at 735 nm. The optical band gap determined from the onset of absorption of the polymer film was 1.37 eV. The highest occupied molecular orbital level of the polymer is as deep as ?5.32 eV. The solution‐processed organic field‐effect transistor (OFETs) was fabricated with bottom gate/top contact geometry. The highest FET hole mobility of PIDT–DPP reached 0.065 cm2 V?1 s?1 with an on/off ratio of 4.6 × 105. This mobility is one of the highest values for narrow band gap conjugated polymers. The power conversion efficiency of the polymer solar cell based on the polymer as donor was 1.76% with a high open circuit voltage of 0.88 V. To the best of our knowledge, this is the first report on the photovoltaic properties of alkyl substituted IDT‐based polymers. © 2011 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem, 2012 相似文献
9.
Mark A. M. Leenen Tim Meyer Fabio Cucinotta Heiko Thiem Ralf Anselmann Luisa De Cola 《Journal of polymer science. Part A, Polymer chemistry》2010,48(9):1973-1978
A new copolymer of benzo[1,2‐b:4,5‐b′]dithiophene and 3,3′‐bis(tridecanoxy)‐5,5′‐bithiophene was synthesized through Stille copolymerization. The bis‐(3‐alkoxythiophene) monomer was synthesized through a silver fluoride mediated, palladium‐catalyzed cross‐coupling, in which bromide functional groups were preserved instead of consumed. The copolymer has been characterized and applied in field‐effect transistors, giving a hole mobility of 2 × 10?3 cm2/Vs and an on/off ratio >106, with negligible hysteresis, on standard silicon substrates. © 2010 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 48: 1973–1978, 2010 相似文献
10.
Shiming Zhang Yugeng Wen Weiyi Zhou Yunlong Guo Lanchao Ma Xingang Zhao Zhen Zhao Stephen Barlow Seth R. Marder Yunqi Liu Xiaowei Zhan 《Journal of polymer science. Part A, Polymer chemistry》2013,51(7):1550-1558
Solution‐processable polymers consisting of perylene diimide (PDI) acceptor moieties alternating with dithienothiophene (DTT), N‐dodecyl‐dithienopyrrole (DTP), or oligomers of these donor groups have been synthesized. We have, in addition to varying the donor, varied the N,N′ substituents of the PDIs. The thermal, optical, electrochemical, and charge‐transport properties of the polymers have been investigated. The polymers show broad absorption extending from 300 to 1000 nm with optical band gaps as low as 1.2 eV; the band gap decreases with increasing the conjugation length of donor block, or by replacement of DTT by DTP. The electron affinities of the polymers, estimated from electrochemical data, range from ?3.87 to ?4.01 eV and are slightly affected by the specific choice of donor moiety, while the estimated ionization potentials (?5.31 to ?5.92 eV) are more sensitive to the choice of donor. Bottom‐gate top‐contact organic field‐effect transistors based on the polymers generally exhibit n‐channel behavior with electron mobilities as high as 1.7 × 10–2 cm2/V/s and on/off ratios as high as 106; one PDI‐DTP polymer is an ambipolar transport material with electron mobility of 4 × 10–4 cm2/V/s and hole mobility of 4 × 10–5 cm2/V/s in air. There is considerable variation in the charge transport properties of the polymers with the chemical structures. © 2013 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem, 2013 相似文献
11.
Ndubuisi B. Ukah Satyaprasad P. Senanayak Danish Adil Grant Knotts Jimmy Granstrom K. S. Narayan Suchi Guha 《Journal of Polymer Science.Polymer Physics》2013,51(21):1533-1542
Low‐operating voltage, high mobility, and stable organic field‐effect transistors (OFETs) using polymeric dielectrics such as pristine poly(4‐vinyl phenol) (PVP) and poly(methyl methacrylate) (PMMA), dissolved in solvents of high dipole moment, have been achieved. High dipole moment solvents such as propylene carbonate and dimethyl sulfoxide used for dissolving the polymer dielectric enhance the charge carrier mobilities by three orders of magnitude in pentacene OFETs compared with low dipole moment solvents. Fast switching circuits with patterned gate PVP‐based pentacene OFETs demonstrated a switching frequency of 75 kHz at input voltages of |5 V|. The frequency response of the OFETs is attributed to a high degree of dipolar‐order in dielectric films obtained from high‐polarity solvents and the resulting energetically ordered landscape for transport. Remarkably, these pentacene‐based OFETs exhibited high stability under bias stress and in air with negligible shifts in the threshold voltage. © 2013 Wiley Periodicals, Inc. J. Polym. Sci., Part B: Polym. Phys. 2013 , 51, 1533–1542 相似文献
12.
Seon‐Kyoung Son Yoon‐Suk Choi Woo‐Hyung Lee Yongtaek Hong Jae‐Ryoung Kim Won‐Suk Shin Sang‐Jin Moon Do‐Hoon Hwang In‐Nam Kang 《Journal of polymer science. Part A, Polymer chemistry》2010,48(3):635-646
A series of new phenothiazylene vinylene‐based semiconducting polymers, poly[3,7‐(4′‐dodecyloxyphenyl)phenothiazylene vinylene] ( P1 ), poly[3,7‐(4′‐dodecyloxyphenyl)phenothiazylene vinylene‐alt‐1,4‐phenylene vinylene] ( P2 ), and poly[3,7‐(4′‐dodecyloxyphenyl)phenothiazylene vinylene‐alt‐2,5‐thienylene vinylene] ( P3 ), have been synthesized via a Horner‐Emmons reaction. FTIR and 1H NMR spectroscopies confirmed that the configurations of the vinylene groups in the polymers were all‐trans (E). The weight‐averaged molecular weights (Mw) of P1 , P2 , and P3 were found to be 27,000, 22,000, and 29,000, with polydispersity indices of 1.91, 2.05, and 2.25, respectively. The thermograms for P1 , P2 , and P3 each contained only a broad glass transition, at 129, 167, and 155 °C, respectively, without the observation of melting features. UV–visible absorption spectra of the polymers showed two strong absorption bands in the ranges 315–370 nm and 450–500 nm, which arose from absorptions of the phenothiazine segments and the conjugated main chains. Solution‐processed field‐effect transistors fabricated from these polymers showed p‐type organic thin‐film transistor characteristics. The field‐effect mobilities of P1 , P2 , and P3 were measured to be 1.0 × 10?4, 3.6 × 10?5, and 1.0 × 10?3 cm2 V?1 s?1, respectively, and the on/off ratios were in the order of 102 for P1 and P2 , and 103 for P3 . Atomic force microscopy and X‐ray diffraction analysis of thin films of the polymers show that they have amorphous structures. A photovoltaic device in which a P3 /PC71BM (1/5) blend film was used as the active layer exhibited an open‐circuit voltage (VOC) of 0.42 V, a short circuit current (JSC) of 5.17 mA cm?2, a fill factor of 0.35, and a power conversion efficiency of 0.76% under AM 1.5 G (100 mW cm?2) illumination. © 2009 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 48: 635–646, 2010 相似文献
13.
Chien‐Yang Chiu Hengbin Wang Hung Phan Kazuya Shiratori Thuc‐Quyen Nguyen Craig J. Hawker 《Journal of polymer science. Part A, Polymer chemistry》2016,54(7):889-899
A series of polymers based on 8,8′‐biindeno[2,1‐b]thiophenylidene for use in photovoltaic devices and field‐effect transistors are reported. These structurally twisted olefins are effective building blocks for preparation of low bandgap polymers with optical bandgaps of 1.2–1.5 eV. Device performance, such as Voc and Jsc, in solar cell devices could be successfully modulated by incorporation of a variety of comonomers. Ambipolar properties in field‐effect transistors using Au electrodes were also studied, with PtBTPDPP exhibiting balanced charge transport properties with hole and electron mobilities of 0.09 and 0.12 cm2·V?1·s?1, respectively. © 2015 Wiley Periodicals, Inc. J. Polym. Sci., Part A: Polym. Chem. 2016 , 54, 889–899 相似文献
14.
Sven Horst Nicholas R. Evans Hugo A. Bronstein Charlotte K. Williams 《Journal of polymer science. Part A, Polymer chemistry》2009,47(19):5116-5125
2,5‐Dihydroxyboryl‐1,1‐dimethyl‐3,4‐bis(3‐fluorophenyl)‐silole ( 2a ) was prepared in 40% overall yield by reaction between 3‐fluorophenyl‐acetylene and dichlorodimethylsilane to yield bis[2(3‐fluorophenyl)ethynyl]dimethylsilane ( 1a ), which subsequently undergoes a reductive cyclization reaction using an excess of lithium naphthalenide. The fluoro substituted silole was applied as a co‐monomer in the Suzuki polycondensation reaction with 2,7‐dibromo‐9,9‐dioctyl‐fluorene. An oligomer ( 3a ) with a degree of polymerization of 6 was prepared and compared with an oligomer without fluoro substitution on the silole ( 3b ), with a degree of polymerization of 4. The new oligomers were spin coated onto glass slides and showed weak green photoluminescence (PL) in the solid state. Cyclic voltammetry, visible absorption spectroscopy, and density functional theory calculations showed that the fluoro substituents were sufficiently electron withdrawing to lower both the highest occupied molecular orbital and the lowest unoccupied molecular orbital in the oligomer. Two further alternating co‐oligomers were prepared from 2,5‐dihydroxyboryl‐1,1‐dimethyl‐3,4‐bis(phenyl)‐silole ( 2b ) and 1,3‐dibromo‐5‐fluoro‐benzene ( 4a ) or 1,3‐dibromobenzene ( 4b ). These oligomers both had degrees of polymerization of 8 and showed green PL in the solid state. © 2009 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 47: 5116–5125, 2009 相似文献
15.
Kai‐Fang Cheng Chu‐Chen Chueh Chia‐Hung Lin Wen‐Chang Chen 《Journal of polymer science. Part A, Polymer chemistry》2008,46(18):6305-6316
Four new conjugated copolymers based on the moiety of bis(4‐hexylthiophen‐2‐yl)‐6,7‐diheptyl‐[1,2,5]thiadiazolo[3,4‐g]quinoxaline (BTHTQ) were synthesized and characterized, including poly(6,7‐diheptyl‐4,9‐bis(4‐hexylthiophen‐2‐yl)‐[1,2,5]thiadiazolo[3,4‐g]quinoxaline) (PBTHTQ), poly‐(6,7‐diheptyl‐4,9‐bis(4‐hexylthiophen‐2‐yl)‐[1,2,5]thiadiazolo‐[3,4‐g]quinoxaline‐alt‐2,5‐thiophene) (PTTHTQ), poly(6,7‐diheptyl‐4,9‐bis(4‐hexylthiophen‐2‐yl) [1,2,5]‐thiadiazolo‐[3,4‐g]quinoxaline‐alt‐9,9‐dioctyl‐2,7‐fluore‐ne) (PFBTHTQ), and poly(6,7‐diheptyl‐4,9‐bis(4‐hexylthiophen‐2‐yl)‐[1,2,5]thiadiazolo[3,4‐g]quinoxaline‐alt‐1,4‐bis(decyloxy)phenylene) (PPBTHTQ). The λmax of PBTHTQ, PTTHTQ, PFBTHTQ, and PPBTHTP thin films was shown at 780, 876, 734, and 710 nm, respectively, with the corresponding optical band gaps (E) of 1.31, 1.05, 1.40, and 1.43 eV. The relatively small band gaps of the synthesized polymers suggested the significance of intramolecular charge transfer between the donor and TQ moiety. The estimated hole mobilities of PBTHTQ, PTTHTQ, and PFBTHTQ‐based field effect transistor devices using CHCl3 solvent were 8.5 × 10?5, 8.5 × 10?4, and 2.8 × 10?5 cm2 V?1 s?1, respectively, but significantly enhanced to 1.6 × 10?4, 3.8 × 10?3, and 1.5 × 10?4 cm2 V?1 s?1 using high boiling point solvent of chlorobenzene (CB). The higher hole mobility of PTTHTQ than the other two copolymers was attributed from its smaller band gap or ordered morphology [wormlike (chloroform) or needle‐like (CB)]. The characteristics of small band gap and high mobility suggest the potential applications of the BTHTQ‐based conjugated copolymers in electronic and optoelectronic devices. © 2008 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 46: 6305–6316, 2008 相似文献
16.
Jun Huang Yongxiang Zhu Lianjie Zhang Ping Cai Xiaofeng Xu Junwu Chen Yong Cao 《Journal of polymer science. Part A, Polymer chemistry》2014,52(12):1652-1661
Two conjugated copolymers PADT‐DPP and PADT‐FDPP based on anthradithiophene and diketopyrrolopyrrole, with thiophene and furan as the π‐conjugated bridge, respectively, were successfully synthesized and characterized. The number‐averaged molecular weights of the two polymers are 38.7 and 30.2 kg/mol, respectively. Polymers PADT‐DPP and PADT‐FDPP exhibit broad absorption bands and their optical band gaps are 1.44 and 1.50 eV, respectively. The highest occupied molecular orbital energy level of PADT‐DPP is located at ?5.03 eV while that of PADT‐FDPP is at ?5.16 eV. In field‐effect transistors, PADT‐DPP and PADT‐FDPP displayed hole mobilities of 4.7 × 10?3 and 2.7 × 10?3 cm2/(V s), respectively. In polymer solar cells, PADT‐DPP and PADT‐FDPP showed power conversion efficiency (PCE) of 3.44% and 0.29%, respectively. Atomic force microscopy revealed that the poor efficiency of PADT‐FDPP should be related to the large two‐phase separation in its active layer. If 1,8‐diiodooctane (DIO) was used as the solvent additive, the PCE of PADT‐DPP remained almost unchanged due to very limited morphology variation. However, the addition of DIO could remarkably elevate the PCE of PADT‐FDPP to 2.62% because of the greatly improved morphology. Our results suggest that the anthradithiophene as an electron‐donating polycyclic system is useful to construct new D–A alternating copolymers for efficient polymer solar cells. © 2014 Wiley Periodicals, Inc. J. Polym. Sci., Part A: Polym. Chem. 2014 , 52, 1652–1661 相似文献
17.
Sameh Boudiba Aleš Růžička Christoph Ulbricht Sandra Enengl Christina Enengl Jacek Gasiorowski Cigdem Yumusak Veronika Pokorná Drahomír Výprachtický Kurt Hingerl Dietrich R. T. Zahn Francesca Tinti Nadia Camaioni Sabrina Bouguessa Abdelkrim Gouasmia Věra Cimrová Daniel Ayuk Mbi Egbe 《Journal of polymer science. Part A, Polymer chemistry》2017,55(1):129-143
Four conjugated polymers ( P1 – P4 ) consisting of alternating anthracene‐9,10‐diyl and 1,4‐phenylene building blocks connected via ethynylene as well as vinylene ( P1 and P2 ), ethynylene‐only ( P3 ), and vinylene‐only ( P4 ) moieties, respectively, were synthesized and studied. The phenylene units in all four polymers bear 2‐ethylhexyloxy side‐chains to promote good solubility. The three polymers with vinylene units ( P1 , P2 , and P4 ) were prepared using the Horner–Wadsworth–Emmons reaction. For the synthesis of the arylene‐ethynylene polymer P3, the palladium‐catalyzed Sonogashira cross‐coupling reaction was used. The polymers were characterized by NMR, Fourier transform infrared spectroscopy, and Raman spectroscopy. Photophysical, absorption and photoluminescence, and electrochemical properties were studied. Spectroscopic ellipsometry measurements were performed to gain more insight on the optical properties. In addition, the transport properties were investigated using admittance spectroscopy. The bulk hole mobility and its dependence on the electric field were evaluated for P1 and P2 . © 2016 Wiley Periodicals, Inc. J. Polym. Sci., Part A: Polym. Chem. 2017 , 55, 129–143 相似文献
18.
Weifeng Zhang Congyuan Wei Jianyao Huang Zhihui Chen Liping Wang Gui Yu 《Journal of polymer science. Part A, Polymer chemistry》2017,55(21):3627-3635
In this work, we report the synthesis, characterization, and application of two regioirregular naphthalenediimide (NDI)‐based alternating conjugated polymers, namely P1 and P2 , in which nitrile‐substituted moiety, 2,3‐bis(thiophen‐2‐yl)acrylonitrile and NDI moiety act as donor and acceptor unit, respectively. The two regioirregular polymers possess low‐lying LUMO energy levels of ?3.92 eV for P1 and ?3.96 eV for P2 . Both polymers possess typical dual‐band UV?Vis?NIR absorption profiles of NDI‐based polymers, and show broadened and red‐shifted absorption spectra in the solid state compared with those in solutions. Field‐effect transistor devices with top‐gate bottom‐contact configuration were used to evaluate the polymers' semiconducting properties. The two polymers exhibited promising and air‐stable ambipolar charge transport characteristics. Thin film microstructure investigations (AFM and 2D‐GIXRD) suggest both polymers formed continuous and smooth thin films, and adopted predominantly face‐on molecular packing in the solid state. © 2017 Wiley Periodicals, Inc. J. Polym. Sci., Part A: Polym. Chem. 2017 , 55 , 3627–3635 相似文献
19.
Dong Wook Chang Seo‐Jin Ko Gi‐Hwan Kim Seo‐Yoon Bae Jin Young Kim Liming Dai Jong‐Beom Baek 《Journal of polymer science. Part A, Polymer chemistry》2012,50(2):271-279
Two model polymers, containing fluorene as an electron‐donating moiety and benzothiadiazole (BT) as an electron‐accepting moiety, have been synthesized by Suzuki coupling reaction. Both polymers are composed of the same chemical composition, but the BT acceptor can be either at a side‐chain (i.e., S‐polymer) or along the polymer main chain (i.e., M‐polymer). Their optical, electrochemical, and photovoltaic properties, together with the field‐effect transistor (FET) characteristics, have been investigated experimentally and theoretically. The FET carrier mobilities were estimated to be 5.20 × 10?5 and 3.12 × 10?4 cm2 V?1 s?1 for the S‐polymer and M‐polymer, respectively. Furthermore, polymeric solar cells (PSCs) with the ITO/PEDOT:PSS/S‐polymer or M‐polymer:PC71BM(1:4)/Al structure were constructed and demonstrated to show a power conversion efficiency of 0.82 and 1.24% for the S‐polymer and M‐polymer, respectively. The observed superior device performances for the M‐polymer in both FET and PSCs are attributable to its relatively low band‐gap and close molecular packing for efficient solar light harvesting and charge transport. This study provides important insights into the design of ideal structure–property relationships for conjugate polymers in FETs and PSCs. © 2011 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem, 2012 相似文献
20.
Rupei Tang Yutao Chuai Caixia Cheng Fu Xi Dechun Zou 《Journal of polymer science. Part A, Polymer chemistry》2005,43(14):3126-3140
A series of new poly(p‐phenylene vinylene) derivatives with different dendritic pendants—poly{2‐[3′,5′‐bis(2″‐ethylhexyloxy)benzyloxy]‐1,4‐phenylenevinylene} (BE–PPV), poly{2‐[3′,5′‐bis(3″,7″‐dimethyl)octyloxy]‐1,4‐phenylenevinylene} (BD–PPV), poly(2‐{3′,5′‐bis[3″,5″‐bis(2?‐ethylhexyloxy)benzyloxy]benzyloxy}‐1,4‐phenylenevinylene) (BBE–PPV), poly(2‐{3′,5′‐bis[3″,5″‐bis(3?,7?‐dimethyloctyloxy)benzyloxy]benzyloxy}‐1,4‐phenylenevinylene) (BBD–PPV), and poly[(2‐{3′,5′‐bis[3″,5″‐bis(2?‐ethylhexyloxy)benzyloxy]benzyloxy}‐1,4‐phenylenevinylene)‐co‐(2‐{3′,5′‐bis[3″,5″‐bis(3?,7?‐dimethyloctyloxy)benzyloxy]benzyloxy}‐1,4‐phenylenevinylene)] (BBE‐co‐BBD–PPV; 1:1)—were successfully synthesized according to the Gilch route. The structures and properties of the monomers and the resulting conjugated polymers were characterized with 1H and 13C NMR, elemental analysis, gel permeation chromatography, thermogravimetric analysis, ultraviolet–visible absorption spectroscopy, photoluminescence, and electroluminescence spectroscopy. The obtained polymers possessed excellent solubility in common solvents and good thermal stability, with a 5% weight loss temperature of more than 328 °C. The weight‐average molecular weights and polydispersity indices of BE–PPV, BD–PPV, BBE–PPV, BBD–PPV, and BBE‐co‐BBD–PPV (1:1) were in the range of 1.33–2.28 × 105 and 1.35–1.53, respectively. Double‐layer light‐emitting diodes (LEDs) with the configuration of indium tin oxide/polymer/tris(8‐hydroxyquinoline) aluminum/Mg:Ag/Ag devices were fabricated, and they emitted green‐yellow light. The turn‐on voltages of BE–PPV, BD–PPV, BBE–PPV, BBD–PPV, and BBE‐co‐BBD–PPV (1:1) were approximately 5.6, 5.9, 5.5, 5.2, and 4.8 V, respectively. The LED devices of BE–PPV and BD–PPV possessed the highest electroluminescent performance; they exhibited maximum luminance with about 860 cd/m2 at 12.8 V and 651 cd/m2 at 13 V, respectively. The maximum luminescence efficiency of BE–PPV and BD–PPV was in the range of 0.37–0.40 cd/A. © 2005 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 43: 3126–3140, 2005 相似文献