首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Consider the advection–diffusion equation: u1 + aux1 ? vδu = 0 in ?n × ?+ with initial data u0; the Support of u0 is contained in ?(x1 < 0) and a: ?n → ? is positive. In order to approximate the full space solution by the solution of a problem in ? × ?+, we propose the artificial boundary condition: u1 + aux1 = 0 on ∑. We study this by means of a transmission problem: the error is an O(v2) for small values of the viscosity v.  相似文献   

2.
We consider the evolution of microstructure under the dynamics of the generalized Benjamin–Bona–Mahony equation (1) with u: ?2 → ?. If we model the initial microstructure by a sequence of spatially faster and faster oscillating classical initial data vn, we obtain a sequence of spatially highly oscillatory classical solutions un. By considering the Young measures (YMs) ν and µ generated by the sequences vn and un, respectively, as n → ∞, we derive a macroscopic evolution equation for the YM solution µ, and show exemplarily how such a measure‐valued equation can be exploited in order to obtain classical evolution equations for effective (macroscopic) quantities of the microstructure for suitable initial data vn and non‐linearities f. Copyright © 2005 John Wiley & Sons, Ltd.  相似文献   

3.
We discuss the efficiency of the conjugate gradient (CG) method for solving a sequence of linear systems; Aun+1 = un, where A is assumed to be sparse, symmetric, and positive definite. We show that under certain conditions the Krylov subspace, which is generated when solving the first linear system Au1 = u0, contains the solutions {un} for subsequent time steps. The solutions of these equations can therefore be computed by a straightforward projection of the right‐hand side onto the already computed Krylov subspace. Our theoretical considerations are illustrated by numerical experiments that compare this method with the order‐optimal scheme obtained by applying the multigrid method as a preconditioner for the CG‐method at each time step. Copyright © 2007 John Wiley & Sons, Ltd.  相似文献   

4.
We consider p a partial differential operator of order 2 and Rn= ω+ ∪ ?ω ∪ ω? a partition of Rn , such that (p, ω+) admits a strictly diffractive point (in the sense of Friedlander and Melrose). We compute the trace and the trace of the normal derivative on of the solution u of the diffraction problem pu= 0 in ω+ u satisfying a mixed boundary condition on ?ω, ?ω analytic. That is done using the construction by Lebeau of a Gevrey 3 parametrix in the neighborhood of the strictly diffractive point.

This result generalizes, for a mixed boundary condition, the Gevrey 3 propogation result of Lebeau. We use this result to compute the leading term in the shadow region of the diffracted wave outside a strictly convex analytical obstacle with a mixed boundary condition and a given incoming wave.  相似文献   

5.
We estimate the blow‐up time for the reaction diffusion equation utu+ λf(u), for the radial symmetric case, where f is a positive, increasing and convex function growing fast enough at infinity. Here λ>λ*, where λ* is the ‘extremal’ (critical) value for λ, such that there exists an ‘extremal’ weak but not a classical steady‐state solution at λ=λ* with ∥w(?, λ)∥→∞ as 0<λ→λ*?. Estimates of the blow‐up time are obtained by using comparison methods. Also an asymptotic analysis is applied when f(s)=es, for λ?λ*?1, regarding the form of the solution during blow‐up and an asymptotic estimate of blow‐up time is obtained. Finally, some numerical results are also presented. Copyright © 2007 John Wiley & Sons, Ltd.  相似文献   

6.
In this paper, we investigate the existence of global weak solutions to the Cauchy problem of a modified two‐component Camassa‐Holm equation with the initial data satisfying limx → ±∞u0(x) = u±. By perturbing the Cauchy problem around a rarefaction wave, we obtain a global weak solution for the system under the assumption u?u+. The global weak solution is obtained as a limit of approximation solutions. The key elements in our analysis are the Helly theorem and the estimation of energy for approximation solutions in $H^1(\mathbb {R})\times H^1(\mathbb {R})In this paper, we investigate the existence of global weak solutions to the Cauchy problem of a modified two‐component Camassa‐Holm equation with the initial data satisfying limx → ±∞u0(x) = u±. By perturbing the Cauchy problem around a rarefaction wave, we obtain a global weak solution for the system under the assumption u?u+. The global weak solution is obtained as a limit of approximation solutions. The key elements in our analysis are the Helly theorem and the estimation of energy for approximation solutions in $H^1(\mathbb {R})\times H^1(\mathbb {R})$ and some a priori estimates on the first‐order derivatives of approximation solutions.  相似文献   

7.
We shall show an exact time interval for the existence of local strong solutions to the Keller‐Segel system with the initial data u0 in Ln /2w (?n), the weak Ln /2‐space on ?n. If ‖u0‖ is sufficiently small, then our solution exists globally in time. Our motivation to construct solutions in Ln /2w (?n) stems from obtaining a self‐similar solution which does not belong to any usual Lp(?n). Furthermore, the characterization of local existence of solutions gives us an explicit blow‐up rate of ‖u (t)‖ for n /2 < p < ∞ as tTmax, where Tmax denotes the maximal existence time (© 2010 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   

8.
In this paper, we study the Cauchy problem for the Keller–Segel system with fractional diffusion generalizing the Keller–Segel model of chemotaxis for the initial data (u0,v0) in critical Fourier‐Herz spaces with q ∈ [2, ], where 1 < α ≤ 2. Making use of some estimates of the linear dissipative equation in the frame of mixed time‐space spaces, the Chemin ‘mono‐norm method’, the Fourier localization technique and the Littlewood–Paley theory, we get a local well‐posedness result and a global well‐posedness result with a small initial data. In addition, ill‐posedness for ‘doubly parabolic’ models is also studied. Copyright © 2011 John Wiley & Sons, Ltd.  相似文献   

9.
In this article, the local well‐posedness of Cauchy's problem is explored for a system of quadratic nonlinear Schrödinger equations in the space Lp( R n). In a special case of mass resonant 2 × 2 system, it is well known that this problem is well posed in Hs(s≥0) and ill posed in Hs(s < 0) in two‐space dimensions. By translation on a linear semigroup, we show that the general system becomes locally well posed in Lp( R 2) for 1 < p < 2, for which p can arbitrarily be close to the scaling limit pc=1. In one‐dimensional case, we show that the problem is locally well posed in L1( R ); moreover, it has a measure valued solution if the initial data are a Dirac function. Copyright © 2016 John Wiley & Sons, Ltd.  相似文献   

10.
In this article, using a single computational cell, we report some stable two‐level explicit finite difference approximations of O(kh2 + h4) for ?u/?n for three‐space dimensional quasi‐linear parabolic equation, where h > 0 and k > 0 are mesh sizes in space and time directions, respectively. When grid lines are parallel to x‐, y‐, and z‐coordinate axes, then ?u/?n at an internal grid point becomes ?u/?x, ?u/?y, and ?u/?z, respectively. The proposed methods are also applicable to the polar coordinates problems. The proposed methods have the simplicity in nature and use the same marching type of technique of solution. Stability analysis of a linear difference equation and computational efficiency of the methods are discussed. The results of numerical experiments are compared with exact solutions. © 2003 Wiley Periodicals, Inc. Numer Methods Partial Differential Eq 19: 327–342, 2003.  相似文献   

11.
Y. Wang In this paper, the finite time extinction of solutions to the fast diffusion system ut=div(|?u|p ? 2?u) + vm, vt=div(|?v|q ? 2?v) + un is investigated, where 1 < p,q < 2, m,n > 0 and is a bounded smooth domain. After establishing the local existence of weak solutions, the authors show that if mn > (p ? 1)(q ? 1), then any solution vanishes in finite time provided that the initial data are ‘comparable’; if mn = (p ? 1)(q ? 1) and Ω is suitably small, then the existence of extinction solutions for small initial data is proved by using the De Giorgi iteration process and comparison method. On the other hand, for 1 < p = q < 2 and mn < (p ? 1)2, the existence of at least one non‐extinction solution for any positive smooth initial data is proved. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   

12.
We study the Cauchy problem for a class of strongly damped multidimensional generalized Boussinesq equations uttuutt2u2utt?kΔutf(u), where k is a positive constant. Under some assumptions and by using potential well method, we prove the existence and nonexistence of global weak solution without solution without establishing the local existence theory. Copyright © 2016 John Wiley & Sons, Ltd.  相似文献   

13.
We consider the problem of minimizing 0<p<1, h∈?, σ>0, among functions u:?d?Ω→?d, u∣?Ω=0, and measurable characteristic functions χ:Ω→?. Here ?+h, ??, denote quadratic potentials defined on the space of all symmetric d×d matrices, h is the minimum energy of ?+h and ε(u) denotes the symmetric gradient of the displacement field. An equilibrium state û, χ?, of I [·,·,h, σ] is termed one‐phase if χ?≡0 or χ?≡1, two‐phase otherwise. We investigate the way in which the distribution of phases is affected by the choice of the parameters h and σ. Copyright 2002 John Wiley & Sons, Ltd.  相似文献   

14.
This work is a continuation of our previous work. In the present paper, we study the existence and uniqueness of global piecewise C1 solutions with shock waves to the generalized Riemann problem for general quasilinear hyperbolic systems of conservation laws with linear damping in the presence of a boundary. It is shown that the generalized Riemann problem for general quasilinear hyperbolic systems of conservation laws with linear damping with nonlinear boundary conditions in the half space {(t, x) | t ≥ 0, x ≥ 0} admits a unique global piecewise C1 solution u = u (t, x) containing only shock waves with small amplitude and this solution possesses a global structure similar to that of a self‐similar solution u = U (x /t) of the corresponding homogeneous Riemann problem, if each characteristic field with positive velocity is genuinely nonlinear and the corresponding homogeneous Riemann problem has only shock waves but no rarefaction waves and contact discontinuities. This result is also applied to shock reflection for the flow equations of a model class of fluids with viscosity induced by fading memory. (© 2008 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   

15.
In this article, we discuss finite‐difference methods of order two and four for the solution of two‐and three‐dimensional triharmonic equations, where the values of u,(?2u/?n2) and (?4u/?n4) are prescribed on the boundary. For 2D case, we use 9‐ and for 3D case, we use 19‐ uniform grid points and a single computational cell. We introduce new ideas to handle the boundary conditions and do not require to discretize the boundary conditions at the boundary. The Laplacian and the biharmonic of the solution are obtained as byproduct of the methods. The resulting matrix system is solved by using the appropriate block iterative methods. Computational results are provided to demonstrate the fourth‐order accuracy of the proposed methods. © 2009 Wiley Periodicals, Inc. Numer Methods Partial Differential Eq, 2010  相似文献   

16.
Applying the Fourier cosine transformation, the quadratic auto‐correlation equation on the finite interval [0,T] of the positive real half‐axis ?+ is reduced to a problem for the modulus of the finite complex Fourier transform of the solution. From the solutions of this problem L2‐solutions of the auto‐correlation equation are obtained in closed form. Moreover, as in the case of the equation on ?+ a Lavrent'ev regularization procedure for the auto‐correlation equation is suggested. Copyright © 2003 John Wiley & Sons, Ltd.  相似文献   

17.
The structure of nontrivial nonnegative solutions to singularly perturbed quasilinear Dirichlet problems of the form –?Δpu = f(u) in Ω, u = 0 on ?Ω, Ω ? R N a bounded smooth domain, is studied as ? → 0+, for a class of nonlinearities f(u) satisfying f(0) = f(z1) = f(z2) = 0 with 0 < z1 < z2, f < 0 in (0, z1), f > 0 in (z1, z2) and f(u)/up–1 = –∞. It is shown that there are many nontrivial nonnegative solutions with spike‐layers. Moreover, the measure of each spike‐layer is estimated as ? → 0+. These results are applied to the study of the structure of positive solutions of the same problems with f changing sign many times in (0,). Uniqueness of a solution with a boundary‐layer and many positive intermediate solutions with spike‐layers are obtained for ? sufficiently small. (© 2004 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   

18.
In this paper we prove unique solvability of the generalized Stokes resolvent equations in an infinite layer Ω0 = ℝn –1 × (–1, 1), n ≥ 2, in Lq ‐Sobolev spaces, 1 < q < ∞, with slip boundary condition of on the “upper boundary” ∂Ω+0 = ℝn –1 × {1} and non‐slip boundary condition on the “lower boundary” ∂Ω0 = ℝn –1 × {–1}. The solution operator to the Stokes system will be expressed with the aid of the solution operators of the Laplace resolvent equation and a Mikhlin multiplier operator acting on the boundary. The present result is the first step to establish an Lq ‐theory for the free boundary value problem studied by Beale [9] and Sylvester [22] in L 2‐spaces. (© 2006 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   

19.
We consider the following one‐phase free boundary problem: Find (u, Ω) such that Ω = {u > 0} and with QT = ?n × (0, T). Under the condition that Ωo is convex and log uo is concave, we show that the convexity of Ω(t) and the concavity of log u(·, t) are preserved under the flow for 0 ≤ tT as long as ?Ω(t) and u on Ω(t) are smooth. As a consequence, we show the existence of a smooth‐up‐to‐the‐interface solution, on 0 < t < Tc, with Tc denoting the extinction time of Ω(t). We also provide a new proof of a short‐time existence with C2,α initial data on the general domain. © 2002 John Wiley & Sons, Inc.  相似文献   

20.
A time‐fractional reaction–diffusion initial‐boundary value problem with periodic boundary condition is considered on Q ? Ω × [0, T] , where Ω is the interval [0, l] . Typical solutions of such problem have a weak singularity at the initial time t = 0. The numerical method of the paper uses a direct discontinuous Galerkin (DDG) finite element method in space on a uniform mesh, with piecewise polynomials of degree k ≥ 2 . In the temporal direction we use the L1 approximation of the Caputo derivative on a suitably graded mesh. We prove that at each time level of the mesh, our L1‐DDG solution is superconvergent of order k + 2 in L2(Ω) to a particular projection of the exact solution. Moreover, the L1‐DDG solution achieves superconvergence of order (k + 2) in a discrete L2(Q) norm computed at the Lobatto points, and order (k + 1) superconvergence in a discrete H1(Q) seminorm at the Gauss points; numerical results show that these estimates are sharp.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号