首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 148 毫秒
1.
The use of pseudostationary phases (PSPs) in capillary electrophoresis provides powerful separation systems of high efficiency, selectivity and flexibility. Such electrokinetic chromatographic (EKC) systems are particularly useful for chiral analysis or for the analysis of samples containing a broad range of compounds. As the availability of mass and/or structural data on (unknown) sample constituents is increasingly important, the on-line coupling of EKC and mass spectrometry (MS) has gained attention. However, commonly used PSPs, such as micelles and cyclodextrines, may strongly interfere with electrospray ionization (ESI), making on-line EKC–MS quite a challenging task. This review covers the various approaches that have been proposed and developed to combine EKC and MS. A distinction is made between methodologies that prevent the PSP from entering the MS system, and methodologies that allow introduction of PSPs into the ion source. Various approaches such as partial filling of the separation capillary with PSP, use of reverse-migrating PSPs, employment of volatile PSPs, and alternative ionization modes, are outlined. Specific applications are described and overview tables are provided. It is concluded that there is no general solution for EKC–MS available yet, but new ionization techniques like atmospheric pressure photoionization may offer attractive perspectives for achieving full compatibility.  相似文献   

2.
The determination of the velocities of the mobile and the pseudostationary phases (the migration (time) window) is mandatory for the determination of physicochemical properties by electrokinetic chromatography (EKC). This review offers a detailed discussion on the definition, the importance, the determination and the regulation of the migration (time) window in EKC. An overview on the theoretical treatment of chromatographic processes in EKC is given defining EKC in comparison to the term capillary electrophoresis. Methods to determine and influence the migration window are discussed with emphasis on measures that have been taken to modify the electroosmotic flow velocity. Pseudostationary phases (or separation carriers) that are taken into consideration are anionic and cationic micelles, mixed micelles, microdroplets (microemulsions), polymeric pseudostationary phases and dendrimers.  相似文献   

3.
This paper describes for the first time the use of single‐walled carbon nanohorns (SWNHs) as pseudostationary and stationary phases for EKC and CEC, respectively, taking advantage of their characteristic features, such as conical‐end termination, formation of spherical assemblies dahlia‐flower like superstructure and easy functionalization. The use of SWNHs as pseudostationary phase for EKC required the study of their dispersion in different surfactants as well as their compatibility with the electrophoretic system. The carboxylation and subsequent immobilization of carboxylated SWNHs in fused‐silica capillary to obtain useful, reproducible and stable stationary phases for CEC has also been investigated, with promising results. The electrophoretic separations obtained for water‐soluble vitamins in both modalities (EKC and CEC) have been systematically compared with those obtained with single‐walled carbon nanotubes.  相似文献   

4.
To extend the applicability of electrokinetic chromatography (EKC), two new types of pseudostationary phases have been introduced. A high-molecular surfactant, butyl acrylate/butyl methacrylate/methacrylic acid copolymer (BBMA) is employed as a micellar forming surfactant for miccllar electrokinetic chromatography (MEKC). The critical micelle concentration of BBMA is essentially zero, which means the micellar concentration is constant irrespective of temperature and buffer. Some characteristic features of BBMA as the pseudostationary phase for MEKC is investigated in comparison with conventional ionic surfactants. Ovomucoid and avidin, which are proteins isolated from egg white, have been found to be useful chiral selectors in affinity EKC. A few examples of the separation of enantiomers with these proteins are shown.  相似文献   

5.
Enantioseparation of chiral products has become increasingly important in a large diversity of academic and industrial applications. The separation of chiral compounds is inherently challenging and thus requires a suitable analytical technique that can achieve high resolution and sensitivity. In this context, CE has shown remarkable results so far. Chiral CE offers an orthogonal enantioselectivity and is typically considered less costly than chromatographic techniques, since only minute amounts of chiral selectors are needed. Several CE approaches have been developed for chiral analysis, including chiral EKC and chiral CEC. Enantioseparations by EKC benefit from the wide variety of possible pseudostationary phases that can be employed. Chiral CEC, on the other hand, combines chromatographic separation principles with the bulk fluid movement of CE, benefitting from reduced band broadening as compared to pressure-driven systems. Although UV detection is conventionally used for these approaches, MS can also be considered. CE-MS represents a promising alternative due to the increased sensitivity and selectivity, enabling the chiral analysis of complex samples. The potential contamination of the MS ion source in EKC-MS can be overcome using partial-filling and counter-migration techniques. However, chiral analysis using monolithic and open-tubular CEC-MS awaits additional method validation and a dedicated commercial interface. Further efforts in chiral CE are expected toward the improvement of existing techniques, the development of novel pseudostationary phases, and establishing the use of chiral ionic liquids, molecular imprinted polymers, and metal-organic frameworks. These developments will certainly foster the adoption of CE(-MS) as a well-established technique in routine chiral analysis.  相似文献   

6.
Kahle KA  Foley JP 《Electrophoresis》2007,28(15):2503-2526
The separation of enantiomers using electrokinetic chromatography (EKC) with chiral microemulsions is comprehensively reviewed through December 1, 2006. Aqueous chiral EKC separations based on other pseudostationary phases such as micelles and vesicles or on other chiral selectors such as CDs, crown ethers, glycopeptides, ligand exchange moeities are also reviewed from both mechanistic and applications perspective for the period of January 2005 to December 1, 2006.  相似文献   

7.
The selectivity of a compilation of single, mixed, and modified EKC pseudostationary phases, described in the literature and characterized through the solvation parameter model, is analyzed. Not only have micellar systems of different nature been included but also microemulsions, polymeric, and liposomial phases. In order to compare the systems, a principal component analysis of the coefficients of the solvation equation is performed. From this analysis, direct information of the system properties, differences in selectivity, as well as evidence of lack of accuracy in some system characterizations are obtained. These results become a very useful tool to perform separations with mixtures of surfactants, since it is possible to know which mixtures will provide a greater selectivity variation by changing only the composition of the pseudostationary phases. Furthermore, the variation of the selectivity of some mixtures, as well as the effect of the addition of organic solvents on selectivity, is also discussed.  相似文献   

8.
Palmer CP 《Electrophoresis》2007,28(1-2):164-173
This review concerns the introduction, characterization, and application of polymeric pseudostationary phases (PSPs) for EKC since 2004. Achiral and chiral polymers and separations are reviewed, as is the application of polymeric PSPs for the combination of EKC with mass spectrometric detection.  相似文献   

9.
Pascoe R  Foley JP 《Electrophoresis》2002,23(11):1618-1627
Vesicles are large aggregates of surfactant monomers consisting of a spherical bilayer surrounding an internal cavity of solvent. The bilayer structure allows vesicles to be attractive models for the study of various transmembrane and binding processes. The use of thermodynamically stable vesicles (TSV) formed from oppositely charged surfactants for use as a pseudostationary phase in electrokinetic chromatography (EKC) was first accomplished using dodecyltrimethylammonium bromide and sodium dodecyl sulfate (DTAB/SDS). Surfactant vesicles have demonstrated enhanced separation characteristics compared to conventional micelles in EKC, although only investigated in aqueous media. Organic modifiers have been widely studied and used in EKC to enhance separation conditions. In this study, vesicles formed from cetyltrimethylammonium bromide and sodium octyl sulfate (CTAB/SOS) were investigated in the presence of "class I and II" organic modifiers. Electrophoretic and chromatographic parameters were examined as well as linear solvation energy relationship analysis (LSER) to characterize the effects of the modifiers on retention and selectivity in EKC. LSER analysis is a useful way to quantitatively investigate solute/solvent interactions responsible for retention and selectivity.  相似文献   

10.
We developed a rapid, microscale and reliable analytical method for binding of drugs to plasma proteins using capillary electrophoresis (CE) with ionic cyclodextrins (CD) combined with frontal analysis. These CDs were used as pseudostationary phases of electrokinetic chromatography (EKC). The CD-modified EKC (CDEKC) approach allowed us to separate anionic drugs from plasma proteins, whereas CZE could not separate these drugs from plasma proteins because they had a similar mobility like plasma proteins. CDs uniquely interact with these drugs but not with plasma proteins. Therefore, CDEKC could be coupled with frontal analysis to measure the binding of anionic drugs to plasma proteins. The binding values obtained by CDEKC were highly consistent with those determined by the ultrafiltration method. Our CDEKC approach should expand the applicability of CE to protein binding analysis.  相似文献   

11.
Electrokinetic chromatography (EKC) allows the separation of closely related substances by the detection of fine effects in analyte-separation system interactions. With the goal of understanding the fine effects involved in separation using a dual cyclodextrin-microemulsion EKC system, an integrated study of NMR and molecular modeling was carried out. The above dual cyclodextrin-microemulsion system was previously used in the separation of clemastine and its related substances and was prepared by the addition of methyl-β-cyclodextrin (MβCD) and heptakis(2,6-di-O-methyl)-β-cyclodextrin (DMβCD) to an oil-in-water microemulsion. The use of DMβCD was shown to be essential in the separation of clemastine from one of its related substance (I(B) ). A molecular modeling study allowed the different affinities of clemastine and I(B) for the two cyclodextrins to be explained. Furthermore, rotating-frame Overhauser effect spectroscopy NMR experiments clearly indicated that besides the primary pseudostationary phase, namely the ionic microemulsion, cyclodextrins acted as a secondary pseudostationary phase. In addition, it was shown that inclusion complexation of sodium dodecyl sulfate (SDS) monomers into the cyclodextrins cavity occurs; differently, the oil (n-heptane) used in the preparation of microemulsion system resulted to be not included into the macrocycle cavity. These experimental results were supported by molecular modeling, which highlighted the preferential inclusion of SDS into DMβCD. On the basis of these results, it was confirmed that, besides its primary role as the ionic carrier in EKC, SDS is involved in inclusion equilibria toward CDs, which can be effective in increasing the system selectivity.  相似文献   

12.
Summary The sweeping concept is extended to capillary zone electrophoresis (CZE) separation of neutral solutes involving complexation with borate. Analogous to the pseudostationary phase in electrokinetic chromatography (EKC), the complexing agent (borate) serves as carrier for sweeping and separation in CZE. Therefore, similar to the retention factor in EKC, the focusing effect in the present system is directly related to the association constant between the analyte and complexing agent. Theoretical and some preliminary experimental studies gerenally suggest that the electrophoretic mobility of the complex and the concentration of the complexing agent affect the resulting length of narrowed zones. Moreover, sweeping using borate is affected by pH since borate complexation is pH dependent. From around 10 to 40-fold improvement in peak heights has been observed experimentally for some neutral test analytes (monosaccharides, catechols, and nucleosides)  相似文献   

13.
The effect of temperature on the chiral recognition of binaphthyl derivatives in the presence of poly sodium N-undecanoyl-LL-leucyl-leucinate (poly LL-SULL) is examined using electrokinetic chromatography (EKC) and steady-state fluorescence anisotropy. An examination of the effect of temperature suggests that the chiral recognition of 1,1'-binaphthyl-2,2'-diol enantiomers improves with increasing temperature, whereas lower temperatures resulted in better enantiosolectivity in the case of 1,1'-binaphthyl-2,2'-diyl hydrogen phosphate enantiomers. In addition, steady-state fluorescence anisotropy results show that the anisotropy of the two enantiomers are different when complexed to poly-(LL) SULL. As would be expected, the enantiomer that binds stronger to the chiral pseudostationary phase, as evidenced by EKC experiments, had higher anisotropy values. The results of this study suggest that steady-state fluorescence anisotropy can be used to gain further insight into chiral recognition.  相似文献   

14.
This paper reviews the use of lipid vesicles as model membranes in capillary electrophoresis (CE). The history and utility of CE in the characterization of microparticles is summarized, focusing on the application of colloidal electromigration theories to lipid vesicles. For instance, CE experiments have been used to characterize the size, surface properties, enclosed volumes, and electrophoretic mobilities of lipid vesicles and of lipoprotein particles. Several techniques involving small molecules or macromolecules separated in the presence of lipid vesicles are discussed. Interactions between the analytes and the lipid vesicles - acting as a pseudostationary phase or coated stationary phase in electrokinetic chromatography (EKC) - can be used to obtain additional information on the characteristics of the vesicles and analytes, and to study the biophysical properties of membrane-molecule interactions in lipid vesicles and lipoproteins. Different methods of determining binding constants by EKC are reviewed, along with the relevant binding constant calculations and a discussion of the application and limitations of these techniques as they apply to lipid vesicle systems.  相似文献   

15.
During the past decades, research has been performed to enhance selectivity in CE by introducing different types of additives into the electrolyte. Research concerning this has taken many directions, especially during the last 5 years. A promising technique, which benefits from no packing or frits, is to use nanoparticles as the pseudostationary phase (PSP) in CEC. PSPs have the advantage of introducing a novel interaction phase for every analysis, which greatly simplify column exchange and circumvent contamination inherited from complex mixtures, e.g., biological samples. The field of nanoparticle-based PSPs used in CEC is covered in this review. The term CEC will be used consequently throughout this review, although some authors used the term EKC to categorize their work. Important requirements for the nanoparticles used and possible reasons for band broadening will be discussed. Applications with silica nanoparticles, polymer nanoparticles, molecularly imprinted polymer nanoparticles, gold nanoparticles, dendrimers, and polymeric surfactants as PSP will also be discussed.  相似文献   

16.
As the pharmaceutical industry continues the daunting search for novel drug candidates, there remains a need for rapid screening methods not only for biological activity, but for physiochemical properties as well. It is invaluable that adequate model systems for absorption and/or bioavailability be developed early in the drug evaluation process to avoid the loss of promising compounds late in development. The focus of this paper is the use of vesicle EKC (VEKC) as a high-throughput, easy, cost-effective, and predictive model for the passive transcellular diffusion of drug candidates in the intestinal epithelium. Vesicles are large aggregates of molecules containing a spherical bilayer structure encapsulating an internal cavity of solvent. It is this bilayer structure that makes vesicles attractive as model membranes. In this study, vesicles were synthesized from both phospholipids and surfactant aggregates, and then employed as pseudostationary phases in EKC (VEKC). The interaction of drug molecules with vesicles in EKC was then used as the basis for an in vitro assay to evaluate passive diffusion. The VEKC technique showed a statistical correlation between the retention of drug candidates using surfactant and phospholipid vesicles and passive diffusion data (log Pow and colon adenocarcinoma). VEKC analysis offers high-throughput capabilities due to the short run times, low sample, and solvent volumes necessary, as well as instrument automation. However, due to the complexity of drug absorption in the intestine, difficulty arises when a single in vitro model is used to predict in vivo absorption characteristics. Therefore, the retention of drug candidates using VEKC in conjunction with other permeability prediction methods can provide a primary screen for a large number of drug candidates early in the drug discovery process with minimal resources.  相似文献   

17.
Durkin D  Foley JP 《Electrophoresis》2000,21(10):1997-2009
The concept of dual opposite injection in capillary electrophoresis (DOI-CE) for the simultaneous separation, under conditions of suppressed electroosmotic flow, of anionic and cationic compounds with no bias in resolution and analysis time, is extended to a higher pH range in a zone electrophoresis mode (DOI-CZE). A new DOI-CE separation mode based on electrokinetic chromatography is also introduced (DOI-EKC). Whereas conventional CZE and DOI-CZE are limited to the separation of charged compounds with different electrophoretic mobilities, DOI-EKC is shown to be capable of separating compounds with the same or similar electrophoretic mobilities. In contrast to conventional EKC with charged pseudostationary phases that often interact too strongly with analytes of opposite charge, the neutral pseudostationary phases appropriate for DOI-EKC are simultaneously compatible with anionic and cationic compounds. This work describes two buffer additives that dynamically suppress electroosmotic flow (EOF) at a higher pH (6.5) than in a previous study (4.4), thus allowing DOI-CZE of several pharmaceutical bases and weakly acidic positional isomers. Several DOI-EKC systems based on nonionic (10 lauryl ether, Brij 35) or zwitterionic (SB-12, CAS U) micelles, or nonionic vesicles (Brij 30) are examined using a six-component test mixture that is difficult to separate by CZE or DOI-CZE. The effect of electromigration dispersion on peak shape and efficiency, and the effect of surfactant concentration on retention, selectivity, and efficiency are described.  相似文献   

18.
Hsieh YF  Huang BY  Liu CP  Liu CY 《Electrophoresis》2010,31(19):3288-3295
A novel pseudostationary phase (PSP) of multiwalled carbon nanotubes (MWCNTs) dispersed with sodium dodecylbenzenesulfonate (NaDDBS) was used for the EKC separation of nucleotides. NaDDBS has a long hydrophobic chain and a benzylsulfonate group. It suspends more MWCNTs (about 100-fold) than SDS, and the π-π interaction between the benzene ring of NaDDBS and MWCNTs prolongs the slurry suspension time. Using NaDDBS as a surfactant can reduce the required amount of MWCNTs and decrease the baseline noise. To produce a stable suspension, the optimum ratio (w/w) of MWCNTs to NaDDBS was investigated with turbidimetry. In this context, several parameters affecting EKC separation were studied, including buffer pH, composition, concentration, and the organic modifier. Use of NaDDBS (8 mg/L)/MWCNTs (0.8 mg/L) as the PSP in a phosphate buffer (30 mM, pH 8) yielded complete resolution of seven geometric isomers of a nucleoside monophosphate. In stacking mode, with 10% MeOH in the sample plug, the mixture of nucleoside mono-, di-, and tri-phosphates was satisfactorily separated in phosphate buffer (50 mM, pH 9). The results indicate that nucleotides with bases containing more electron-withdrawing groups interact more strongly with MWCNTs. The system has been used to separate oligonucleotides, and to analyze nucleotides in a complex matrix sample.  相似文献   

19.
Nanoparticles (NPs) can be used as pseudostationary phases (PSPs) in EKC, which is similar to the use of micelle additives as applied in MEKC. To date, the use of NPs to enhance enantiomeric separation by EKC with β‐CD or its derivative as chiral selector has been reported only in two papers. However, to the best of our knowledge, there has been no prior effort to use NPs for achieving enantioseparation with polysaccharides as chiral selector. This paper describes for the first time the use of carbon nanoparticles (CNPs) as PSPs to modify chiral separation system employing dextrin as chiral selector for the enantioseparations of several basic drugs in capillary EKC. Three different types of CNPs, including carbogenic nanoparticles (NPs), carboxylated single‐walled carbon nanotubes, and carboxylated multiwalled carbon nanotubes, were used as running buffer additives, respectively. The potential of the PSPs and the effects of dextrin concentration, buffer pH, and buffer concentration on the enantioseparations were evaluated. Four pairs of tested enantiomers were successfully resolved in less than 15 min with the resolution values in the range of 1.41–4.52 under optimized conditions. Compared to the buffer without NPs, the introduction of NPs into the buffer enhanced the separation of the enantiomers.  相似文献   

20.
In this paper, the Monte Carlo method for numerically simulating the kinetics and chain-length distribution in radical polymerization is described. Because the Monte Carlo method is not subject to the assumption of steady-state, it is particularly suitable for studying the kinetic behaviour before the steady-state has been reached and for systems in which the steady-state assumption may be violated. Illustrative applications of the algorithm given in this paper not only demonstrate convincingly both the feasibility and usefulness of the algorithm, but also provide some new insight into the illustrative examples. For the case of pseudostationary radical polymerization such as rotating-sector and pulsed-laser initiations, we have found that the pseudostationary radical concentration can be reached after two or three initiation periods. However, the number-average chain-length x̄n reaches the pseudostationary value much slower than the radical concentration. It is oscillatively reaching the pseudostationary value, and the amplitudes of the oscillations are decreasing with time. We have also found that the chain-length distribution of the resulting polymer in the case of pseudostationary radical polymerization with termination by combination has stronger periodic modulation. Hence, it should be easier to locate the points of inflection in practice. Therefore, the rate constant of propagation, kp, can be determined precisely for systems which are dominated by a combination-type of termination.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号